删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

次线性非对称Duffing方程的不变环面

本站小编 Free考研考试/2021-12-27

次线性非对称Duffing方程的不变环面 张新丽1, 朴大雄21. 青岛科技大学数理学院 青岛 266061;
2. 中国海洋大学数学科学学院 青岛 266100 Invariant Tori of Sublinear Asymmetric Duffing Equations Xin Li ZHANG1, Da Xiong PIAO21. School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, P. R. China;
2. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(481 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要利用Moser扭转定理,在一定的光滑性条件下,证明了次线性非对称Duffing方程x"+ax+)1/3-bx-)1/3+φx)=pt)无穷多不变环面的存在性,从而得到拉格朗日稳定性,其中扰动项φx)有界,而强迫项pt)是周期函数.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-08-27
MR (2010):O175.1
基金资助:国家自然科学基金资助项目(11571327,11971059)
通讯作者:朴大雄,E-mail:dxpiao@ouc.edu.cnE-mail: dxpiao@ouc.edu.cn
作者简介: 张新丽,E-mail:zxl@qust.edu.cn
引用本文:
张新丽, 朴大雄. 次线性非对称Duffing方程的不变环面[J]. 数学学报, 2021, 64(6): 967-978. Xin Li ZHANG, Da Xiong PIAO. Invariant Tori of Sublinear Asymmetric Duffing Equations. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 967-978.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/967


[1] Alonso M. J., Ortega R., Roots of unity and unbounded motions of an asymmetric oscillator, J. Differ. Equ., 1998, 143:201-220.
[2] Dieckerhoff R., Zehnder E., Boundedness for solutions via the twist-theorem, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 1987, 14:79-95.
[3] Jiao L., Piao D. X., Wang Y. Q., Boundedness of the general semilinear Duffing equations via the twist-theorem, J. Diff. Equ., 2012, 252:91-113.
[4] Lazer A. C., McKenna P. J., Large-amplitude periodic oscillations in suspension bridge:some new connections with nonlinear analysis, SIAM Rev., 1990, 32(4):537-578.
[5] Liu B., Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 1999, 231:355-373.
[6] Moser J., On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. Ⅱ, 1962, 1962:1-20.
[7] Ortega R., Asymmetric oscillators and twist mappings, J. Lond. Math. Soc., 1996, 53:325-342.
[8] Wang X. M., Aubry-Mather sets for sublinear asymmetric Duffing equations (in Chinese), Sci. Sin. Math., 2012, 42(1):13-21.
[9] Wang X. P., Invariant tori and boundedness in asymmetric oscillations, Acta. Math. Sin. Engl. Ser., 2003, 19:765-782.
[10] Wang Z. H., Wang Y. Q., Li H., Boundedness of solutions for Duffing equations with asymmetric superlinear restoring terms, Chin. Ann. Math. Ser. A, 2002, 23(2):187-196.
[11] You J. G., Boundedness for solutions of superlinear Duffing equations via the twist theorem, Sci. China Ser. A, 1992, 35(4):399-412.

[1]王奕倩. 非对称振动中解的有界性[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 709-714.
[2]朱德明;白玉真. 哈密顿系统的低维环面的保存性[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 959-968.
[3]韩茂安;朱德明. 强共振情况下不变环面的分支[J]. Acta Mathematica Sinica, English Series, 1996, 39(1): 96-101.
[4]何猛省. 时滞方程解的有界性和渐近性[J]. Acta Mathematica Sinica, English Series, 1991, 34(6): 785-792.
[5]尤建功. 正阻尼摆方程的全局吸引性[J]. Acta Mathematica Sinica, English Series, 1991, 34(5): 690-695.
[6]程远纪. 二阶微分方程极限圆型分类问题的判别准则[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 748-758.
[7]王联;王慕秋. 柱面上一类带有强迫项的二阶非线性方程的定性分析[J]. Acta Mathematica Sinica, English Series, 1980, 23(5): 763-772.
[8];. 数学学报第17卷(1974)总目录[J]. Acta Mathematica Sinica, English Series, 1974, 17(4): 302-302.
[9]斯力更. 具有变量时滞的非线性中立型微分方程组的解的有界性和稳定性[J]. Acta Mathematica Sinica, English Series, 1974, 17(3): 197-204.
[10]张炳根. 二阶常微分方程解的有界性[J]. Acta Mathematica Sinica, English Series, 1964, 14(1): 128-136.
[11]梁中超. 几类非线性微分方程解的有界性[J]. Acta Mathematica Sinica, English Series, 1962, 12(2): 156-169.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23876
相关话题/数学 青岛科技大学 数理 中国海洋大学 科学学院