删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

与星象函数有关的拟共形近于凸调和映射

本站小编 Free考研考试/2021-12-27

与星象函数有关的拟共形近于凸调和映射 王智刚1, 黄心中2, 刘志宏3, Rahim KARGAR41 湖南第一师范学院数学与计算科学学院 长沙 410205;
2 华侨大学数学科学学院 泉州 362021;
3 桂林理工大学理学院 桂林 541004;
4 Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland On Quasiconformal Close-to-Convex Harmonic Mappings Involving Starlike Functions Zhi Gang WANG1, Xin Zhong HUANG2, Zhi Hong LIU3, Rahim KARGAR41 School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, P. R. China;
2 School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, P. R. China;
3 College of Science, Guilin University of Technology, Guilin 541004, P. R. China;
4 Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
摘要
图/表
参考文献
相关文章

全文: PDF(693 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要讨论了一类解析部分为星象函数的拟共形近于凸调和映射的基本性质,得到了此类映射的系数不等式、积分表达式、增长定理、面积定理与部分和的近于凸半径.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-06-21
MR (2010):O174.5
基金资助:国家自然科学基金资助项目(11961013);湖南省教育厅重点项目(19A097)
作者简介: 王智刚,E-mail:wangmath@163.com;黄心中,E-mail:huangxz@hqu.edu.cn;刘志宏,E-mail:liuzhihongmath@163.com;Rahim KARGAR4,E-mail:rakarg@utu.fi
引用本文:
王智刚, 黄心中, 刘志宏, Rahim KARGAR. 与星象函数有关的拟共形近于凸调和映射[J]. 数学学报, 2020, 63(6): 565-576. Zhi Gang WANG, Xin Zhong HUANG, Zhi Hong LIU, Rahim KARGAR. On Quasiconformal Close-to-Convex Harmonic Mappings Involving Starlike Functions. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 565-576.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/565


[1] Abu Muhanna Y., Ponnusamy S., Extreme points method and univalent harmonic mappings, In:Complex Analysis and Dynamical Systems VI. Part 2, 223-237, Contemp. Math., 667, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 2016.
[2] Bshouty D., Joshi S. S., Joshi S. B., On close-to-convex harmonic mappings, Complex Var. Elliptic Equ., 2013, 58:1195-1199.
[3] Bshouty D., Lyzzaik A., Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory, 2011, 5:767-774.
[4] Bshouty D., Lyzzaik A., Sakar F. M., Harmonic mappings of bounded boundary rotation, Proc. Amer. Math. Soc., 2018, 146:1113-1121.
[5] Chen S., Ponnusamy S., Rasila A., et al., Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mapping, Acta Math. Sin. Engl. Ser., 2016, 32:297-308.
[6] Chen J., Rasila A., Wang X., Coefficient estimates and radii problems for certain classes of polyharmonic mappings, Complex Var. Elliptic Equ., 2015, 60:354-371.
[7] Chuaqui M., Hernández R., Harmonic univalent mappings and linearly connected domains, J. Math. Anal. Appl., 2007, 332:1189-1194.
[8] Clunie J., Sheil-Small T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math., 1984, 9:3-25.
[9] Duren P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
[10] Ghosh N., Vasudevarao A., On a subclass of harmonic close-to-convex mappings, Monatsh. Math., 2019, 188:247-267.
[11] Kalaj D., Quasiconformal harmonic mappings and close-to-convex domains, Filomat, 2010, 24:63-68.
[12] Kalaj D., Ponnusamy S., Vuorinen M., Radius of close-to-convexity and fully starlikeness of harmonic mappings, Complex Var. Elliptic Equ., 2014, 59:539-552.
[13] Kanas S., Maharana S., Prajapat J. K., Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings, J. Math. Anal. Appl., 2019, 474:931-943.
[14] Kaplan W., Close-to-convex schlicht functions, Michigan Math. J., 1952, 1:169-185.
[15] Kargar R., Pascu N. R., Ebadian A., Locally univalent approximations of analytic functions, J. Math. Anal. Appl., 2017, 453:1005-1021.
[16] Koh N. T., Hereditary convexity for harmonic homeomorphisms, Indiana Univ. Math. J., 2015, 64:231-243.
[17] Koh N. T., Harmonic mappings with hereditary starlikeness, J. Math. Anal. Appl., 2018, 457:273-286.
[18] Li L., Ponnusamy S., Injectivity of sections of univalent harmonic mappings, Nonlinear Anal., 2013, 89:276-283.
[19] Li L., Ponnusamy S., Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. Appl., 2013, 408:589-596.
[20] Li L., Ponnusamy S., Sections of stable harmonic convex functions, Nonlinear Anal., 2015, 123-124:178-190.
[21] Li L., Ponnusamy S., On the generalized Zalcman functional λan2-a2n-1 in the close-to-convex family, Proc. Amer. Math. Soc., 2017, 145:833-846.
[22] Lewy H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 1936, 42:689-692.
[23] Long B. Y., Huang H. Y., Radii of harmonic mappings in the plane, J. Aust. Math. Soc., 2017, 102:331-347.
[24] Maharana S., Prajapat J. K., Srivastava H. M., The radius of convexity of partial sums of convex functions in one direction, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2017, 87:215-219.
[25] Mocanu P. T., Three-cornered hat harmonic functions, Complex Var. Elliptic Equ., 2009, 54:1079-1084.
[26] Mocanu P. T., Injectivity conditions in the complex plane, Complex Anal. Oper. Theory, 2011, 5:759-766.
[27] Nagpal S., Ravichandran V., A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ., 2014, 59:204-216.
[28] Nagpal S., Ravichandran V., Starlikeness, convexity and close-to-convexity of harmonic mappings, In:Current Topics in Pure and Computational Complex Analysis, 201-214, Trends Math., Birkhäuser/Springer, New Delhi, 2014.
[29] Obradovi? M., Ponnusamy S., Wirths K. J., Coefficient characterizations and sections for some univalent functions, Sib. Math. J., 2013, 54:679-696.
[30] Partyka D., Sakan K., Zhu J. F., Quasiconformal harmonic mappings with the convex holomorphic part, Ann. Acad. Sci. Fenn. Math., 2018, 43:401-418.
[31] Ponnusamy S., Rajasekaran S., New sufficient conditions for starlike and univalent functions, Soochow J. Math., 1995, 21:193-201.
[32] Ponnusamy S., Sahoo S. K., Norm estimates for convolution transforms of certain classes of analytic functions, J. Math. Anal. Appl., 2008, 342:171-180.
[33] Ponnusamy S., Sairam Kaliraj A., On harmonic close-to-convex functions, Comput. Methods Funct. Theory, 2012, 12:669-685.
[34] Ponnusamy S., Sairam Kaliraj A., Univalent harmonic mappings convex in one direction, Anal. Math. Phys., 2014, 4:221-236.
[35] Ponnusamy S., Sairam Kaliraj A., Constants and characterization for certain classes of univalent harmonic mappings, Mediterr. J. Math., 2015, 12:647-665.
[36] Ponnusamy S., Sairam Kaliraj A., Starkov V. V., Sections of univalent harmonic mappings, Indag. Math. (N. S.), 2017, 28:527-540.
[37] Ponnusamy S., Sharma N. L., Wirths K. J., Logarithmic coefficients of the inverse of univalent functions, Results Math., 2018, 73:Art. 160.
[38] Singh R., Singh S., Some sufficient conditions for univalence and starlikeness, Collect. Math., 1982, 47:309-314.
[39] Sun Y., Jiang Y. P., Rasila A., On a subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ., 2016, 61:1627-1643.
[40] Sun Y., Rasila A., Jiang Y. P., Linear combinations of harmonic quasiconformal mappings convex in one direction, Kodai Math. J., 2016, 39:366-377.
[41] Wang Z. G., Liu Z. H., Li Y. C., On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 2013, 400:452-459.
[42] Wang Z. G., Liu Z. H., Rasila A., et al., On a problem of Bharanedhar and Ponnusamy involving planar harmonic mappings, Rocky Mountain J. Math., 2018, 48:1345-1358.
[43] Wang Z. G., Shi L., Jiang Y. P., On harmonic K-quasiconformal mappings associated with asymmetric vertical strips, Acta Math. Sin. Engl. Ser., 2015, 31:1970-1976.

[1]金建军, 唐树安. 解析Morrey域的若干刻画[J]. 数学学报, 2019, 62(1): 167-176.
[2]唐树安, 吴冲, 冯小高. Grunsky算子的本性模[J]. 数学学报, 2017, 60(2): 253-260.
[3]廖建全, 王晋勋. D(φ(εx))=0的充分必要条件[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 597-604.
[4]廖建全, 李兴民. [D,φ(x), λ]=0 的充分必要条件[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1085-1090.
[5]尚丽娜高宗升. Laplace-Stieltjes 变换所定义的解析函数的值分布[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 993-100.
[6]董新汉;杨密. Cauchy-Stieltjes积分和面积平均p叶函数[J]. Acta Mathematica Sinica, English Series, 2005, 48(5): 851-858.
[7]邓冠铁. 半平面中解析函数的积分表示[J]. Acta Mathematica Sinica, English Series, 2005, 48(3): 489-492.
[8]李建林;魏广生. 凸域内单叶函数的导数[J]. Acta Mathematica Sinica, English Series, 2002, 45(5): 847-850.
[9]张学莲. 关于Poincaré度量与Bers逼近定理[J]. Acta Mathematica Sinica, English Series, 1997, 40(4): -.
[10]赵业喜. 线性同胚于星象函数的一族解析函数[J]. Acta Mathematica Sinica, English Series, 1997, 40(3): -.
[11]曹惠中. 关于表自然数因子个数的函数[J]. Acta Mathematica Sinica, English Series, 1996, 39(5): -.
[12]靖培栋. 非紧黎曼曲面上关于方程u+au=0的Runge逼近定理与Mittag-Leffler定理[J]. Acta Mathematica Sinica, English Series, 1992, 35(4): 447-453.
[13]苑春方. 某些一阶微分方程解析解的单叶性[J]. Acta Mathematica Sinica, English Series, 1992, 35(4): 483-491.
[14]方企勤. Hadamard定理的积分形式[J]. Acta Mathematica Sinica, English Series, 1991, 34(4): 470-478.
[15]陈红斌. 从属函数族的积分平均[J]. Acta Mathematica Sinica, English Series, 1990, 33(6): 739-756.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23666
相关话题/数学 科学学院 华侨大学 桂林理工大学 湖南