删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

三维Keller-Segel-Navier-Stokes方程弱解的整体存在性

本站小编 Free考研考试/2021-12-27

三维Keller-Segel-Navier-Stokes方程弱解的整体存在性 陆生琪1, 陈淼超2, 刘其林31 三江学院数理部 南京 210012;
2 巢湖学院应用数学学院 合肥 238000;
3 东南大学数学学院 南京 211189 Global Existence of Weak Solutions to a 3D Keller-Segel-Navier-Stokes System Sheng Qi LU1, Miao Chao CHEN2, Qi Lin LIU31 Department of Mathematics and Physics, Sanjiang University, Nanjing 210012, P. R. China;
2 School of Mathematics and Statistics, Chaohu University, Hefei 238000, P. R. China;
3 School of Mathematics, Southeast University, Nanjing 211189, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(395 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文证明具有logistic源的一个3维Keller-Segel-Navier-Stokes方程弱解的整体存在性,并研究了弱解的长时间行为.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-07-01
MR (2010):O175.29
基金资助:安徽省重点大学自然科学基金(KJ2017A453,KJ2017A454);安徽省大学教学研究基金(2016jyxm0693);巢湖学院自然科学基金(XLY-201503)
作者简介: 陆生琪,E-mail:001336@sju.edu.cn;陈淼超,E-mail:chenmiaochao@chu.edu.cn;刘其林,E-mail:liuqlseu@126.com
引用本文:
陆生琪, 陈淼超, 刘其林. 三维Keller-Segel-Navier-Stokes方程弱解的整体存在性[J]. 数学学报, 2020, 63(5): 495-504. Sheng Qi LU, Miao Chao CHEN, Qi Lin LIU. Global Existence of Weak Solutions to a 3D Keller-Segel-Navier-Stokes System. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 495-504.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I5/495


[1] Biler P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 2009, 9:347-359.
[2] Corrias L., Perthame B., Zaag H., Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 2004, 72:1-28.
[3] Fan J., Zhao K., Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains, Discrete Contin. Dyn. Syst. B, 2018, 23(9):3949-3967.
[4] Horstmann D., From 1970 until present:the Keller-Segel model in chemotaxis and its consequences:I. Jahresber. Dtsch. Math.-Ver., 2003, 105:103-165.
[5] Hillen T., Painter K., A user's guide to PDE models for chemotaxis, J. Math. Biol., 2009, 58:183-217.
[6] Keller E., Segel L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 1970, 26:399-415.
[7] Keller E., Segel L., Model for chemotaxis, J. Theor. Biol., 1971, 30:225-234.
[8] Keller E., Segel L., Traveling bands of chemotactic bacteria:a theoretical analysis, J. Theor. Biol., 1971, 30:235-248.
[9] Kozono H., Miura M., Sugiyama Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal., 2016, 270:1663-1683.
[10] Sleeman B., Ward M., Wei J., Existence, stability, and dynamics of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 2005, 65:790-817.
[11] Wrzosek D., Long time behaviour of solutions to a chemotaxis model with volume filling effect, Proc. R. Soc. Edinb., Sect. A, Math., 2006, 136:431-444.
[12] Winkler M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 2011, 34:176-190.
[13] Winkler M., A three-dimensional Keller-Segel-Navier-Stokes system with logistic source:global weak solutions and asymptotic stablization. J. Funct. Anal., 2019, 276:1339-1401.

[1]王伟华. 广义旋转Navier-Stokes方程解的整体适定性和解析性[J]. 数学学报, 2020, 63(5): 417-426.
[2]Chang Ming SONG, Jian Lin ZHANG, Yuan Yuan WANG. Time-Periodic Solution to the Compressible Navier-Stokes/Allen-Cahn System[J]. Acta Mathematica Sinica, English Series, 2020, 36(4): 419-442.
[3]Myong-Hwan RI. Regularity for 3D Navier-Stokes Equations Based on Energy Distribution at Wavenumber Bands[J]. Acta Mathematica Sinica, English Series, 2019, 35(8): 1377-1392.
[4]张辉, 陈鹏飞. 旋度与磁场微极流方程的正则性[J]. 数学学报, 2018, 61(6): 1049-1056.
[5]Jiang XU. A Note on Time-Decay Estimates for the Compressible Navier-Stokes Equations[J]. Acta Mathematica Sinica, English Series, 2018, 34(4): 662-680.
[6]Yun Rui ZHENG. Decay of the 2D Periodic Stationary Viscous Surface Waves[J]. Acta Mathematica Sinica, English Series, 2018, 34(12): 1837-1862.
[7]Wei Hua WANG, Gang WU. Global Mild Solution of Stochastic Generalized Navier-Stokes Equations with Coriolis Force[J]. Acta Mathematica Sinica, English Series, 2018, 34(11): 1635-1647.
[8]Xiao Li GUO, Yue Yang MEN. On Partial Regularity of Suitable Weak Solutions to the Stationary Fractional Navier-Stokes Equations in Dimension Four and Five[J]. Acta Mathematica Sinica, English Series, 2017, 33(12): 1632-1646.
[9]王剑苹, 吴少华. 趋化运动双曲模型弱解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 993-1000.
[10]张万民. Oseen方程弱解和强解的存在性[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 245-256.
[11]陈学勇, 杨茵. 一类趋化性模型行波解的存在性[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 819-828.
[12]赵辉艳. 二维带跳Navier-Stokes方程解的大偏差原理[J]. Acta Mathematica Sinica, English Series, 2012, 55(3): 499-516.
[13]周文华. 退化抛物型方程弱解的存在性[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 495-502.
[14]吴少华. 趋化模型中的一个自由边界问题[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 515-524.
[15]YinDiZhang1, 2Contact Information , LingYuSong1, 2 and TianMa3Contact Information. The existence of global attractors for 2D Navier-Stokes equations in H k spaces[J]. Acta Mathematica Sinica, English Series, 2009, 25(1): 51-58.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23635
相关话题/数学 数理 数学学院 东南大学 运动