删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

欧拉商的同余式及其应用(III)

本站小编 Free考研考试/2021-12-27

欧拉商的同余式及其应用(III) 蔡天新1, 钟豪1, 陈小航21. 浙江大学数学科学学院 杭州 310027;
2. 宾夕法尼亚州立大学数学系 PA 16802 A Congruence Involving the Quotients of Euler and Its Applications (Ⅲ) Tian Xin CAI1, Hao ZHONG1, Shane CHERN21. School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, P. R. China;
2. Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
摘要
图/表
参考文献
相关文章

全文: PDF(443 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在2002,2007的文章中,蔡天新等人介绍了一系列关于二项式系数模平方数的同余式.本文将这些同余式进行改进并推广到了模为立方数的情形,得到了许多新的同余式.如对任意正整数k和正奇数n,当e=2,3,4和6时,Πd|nd/ekd-1μ(n/d)n3的同余式,以及下面这类有趣的同余式

服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-08-24
MR (2010):O156.1
基金资助:国家自然科学基金资助项目(11501052,11571303)
作者简介: 蔡天新,E-mail:txcai@zju.edu.cn;钟豪,E-mail:11435011@zju.edu.cn;陈小航,E-mail:shanechern@psu.edu
引用本文:
蔡天新, 钟豪, 陈小航. 欧拉商的同余式及其应用(III)[J]. 数学学报, 2019, 62(4): 529-540. Tian Xin CAI, Hao ZHONG, Shane CHERN. A Congruence Involving the Quotients of Euler and Its Applications (Ⅲ). Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 529-540.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/529


[1] Al-Shaghay A., Dilcher K., Analogues of the binomial coefficient theorems of Gauss and Jacobi, Int. J. Number Theory, 2016, 12(8):2125-2145.
[2] Cai T., A congruence involving the quotients of Euler and its applications (I), Acta Arith., 2002, 103(4):313-320.
[3] Cai T., Fu X., Zhou X., A congruence involving the quotients of Euler and its applications (Ⅱ), Acta Arith., 2007, 130(3):203-214.
[4] Cao H. Q., Pan H., Note on some congruences of Lehmer, J. Number Theory, 2009, 129(8):1813-1819.
[5] Cosgrave J. B., Dilcher K., Sums of reciprocals modulo composite integers, J. Number Theory, 2013, 133(11):3565-3577.
[6] Cosgrave J. B., Dilcher K., On a congruence of Emma Lehmer related to Euler numbers, Acta Arith., 2013, 161(1):47-67.
[7] Eie M., Ong Y. L., A Generalization of Rummer's Congruences, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 67, No.1, Springer-Verlag, Hamburg, 1997.
[8] Granville A., Arithmetic Properties of Binomial Coeffcients, I. Binomial Coeffcients Modulo Prime Powers, Organic Mathematics, (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
[9] Kanemitsu S., Kuzumaki T., Urbanowicz J., On Congruences for the Sums Σi=1[n/r] χn(i)/ik of E. Lehmer's Type, IM PAN Preprint, No. 735, 2012.
[10] Kuzumaki T., Urbanowicz J., On Congruences for the Sums Σi=1[n/r] χn(i)/n-ri of E. Lehmer's Type, IM PAN Preprint, No. 736, 2012.
[11] Lehmer K., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math., 1938, 39(2):350-360.
[12] Morley F., Note on the congruence 24n≡(-1)n(2n)!/(n!)2, where 2n +1 is a prime, Ann. of Math., 1894/1895, 9:1-6; 168-170.
[13] Sun Z. W., General congruence for Bernoulli polynomials, Discrete Mathematics, 2003, 262(1-3):253-276.
[14] Tóth L., Sándor J., An asymptotic formula concerning a generalized Euler function, Fibonacci Quart., 1989, 27(2):176-180.

[1]赵建容. 第二类Stirling数的一些同余式[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1161-1170.
[2]郗平, 易媛. 推广的Mõbius反转公式[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1135-1140.
[3]傅旭丹;周侠;赵肖东;. 有关Lucas与Babbage同余式的推广[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 693-698.
[4]初文昌. Gould-Hsu反演的多重形式[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 837-844.
[5]李慰萱;田丰. 关于图的色多项式的若干问题[J]. Acta Mathematica Sinica, English Series, 1978, 21(3): 223-230.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23445
相关话题/数学 同余式 数学系 浙江大学 科学学院