删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

考虑基因与基因间的交互作用的基因组选择方法研究

本站小编 Free考研考试/2021-12-27

考虑基因与基因间的交互作用的基因组选择方法研究 刘妍岩1, 王蕊2, 赵燕1, 邹君31. 武汉大学数学与统计学院, 武汉 430072;
2. 河南工业大学理学院 450001;
3. 武汉大学数学与统计学院, 武汉 430072;
4. 华中农业大学植物科学技术学院, 武汉 430070 Genomic Selection Method Considering Gene-to-Gene Interactions LIU Yanyan1, WANG Rui2, ZHAO Yan1, ZOU Jun31. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;
2. School of Sciences, Henan University of Technology, Zhengzhou 450001, China;
3. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(838 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要综合考虑主基因效应以及基因间的交互效应对植物选育种的作用是基因组选择研究关注的热点问题之一.目前已有的研究大多忽略了基因的交互效应,这主要是由于考虑交互效应会大大增加备选基因的数目,从而导致已有的统计建模方法不稳定.本文将基因效应与基因间的交互效应同时引入模型,提出三步模型构建方法以达到简化计算和提高模型预测精度的目标.第一步,不考虑具体模型,通过距离相关筛除方法删掉与响应变量显著无关的基因;第二步,在剩下的基因中,利用贝叶斯方法筛选可能的基因;第三步,基于选出的基因,同时考虑单基因效应和交互效应,利用惩罚方法选择模型并估计参数.通过模拟计算说明我们提出的方法与已有的一步模型选择方法相比具有计算简单、稳健、运行时间少并且预测精度高等优点.最后,将本文的方法应用于油菜花数据,实证分析表明,我们提出的方法显著地提高花期性状的预测精度.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-07-11
PACS:O212.7
基金资助:国家自然科学自然基金(No.11571263)及国家重点研发计划(No.2016YFD0101300和2017YFC1600601)资助项目.

引用本文:
刘妍岩, 王蕊, 赵燕, 邹君. 考虑基因与基因间的交互作用的基因组选择方法研究[J]. 应用数学学报, 2019, 42(5): 684-700. LIU Yanyan, WANG Rui, ZHAO Yan, ZOU Jun. Genomic Selection Method Considering Gene-to-Gene Interactions. Acta Mathematicae Applicatae Sinica, 2019, 42(5): 684-700.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I5/684


[1] Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. J. Genetics, 2001, 157(4):1819-1829
[2] Lipka A E, Kandianis C B, Hudson M E, et al. From association to prediction:statistical methods for the dissection and selection of complex traits in plants. J. Current Opinion in Plant Biology, 2015, 24:110-118
[3] Xu S, Zhu D, Zhang Q. Predicting hybrid performance in rice using genomic best linear unbiased prediction. J. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):12456
[4] Würschum T, Abel S, Zhao Y. Potential of genomic selection in rapeseed (Brassica napus, L.) breeding. J. Plant Breeding, 2013, 133(1):45-51
[5] Wientjes Y C, Veerkamp R F, Bijma P, et al. Empirical and deterministic accuracies of across-population genomic prediction. J. Genetics Selection Evolution, 2015, 47(1):1-14
[6] Wheeler H E, Aquino Michaels K, Gamazon E R, et al. Poly Omic Prediction of Complex Traits:OmicKriging. J. Genetic Epidemiology, 2016, 38(5):402-415
[7] 袁志凯, 熊思灿. 带环境效应的基因组选择方法研究. 应用数学, 2016, 29(1):225-232) (Yuan Z K, Xiong S C. The Study of Genomic Selection Methods with Environmental Effects. Mathematica Applicata, 2016, 29(1):225-232)
[8] Henderson C R. Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975, 31(2):423-447
[9] Liu X Q, Rong J Y, Liu X Y. Best linear unbiased prediction for linear combinations in general mixed linear models. Journal of Multivariate Analysis, 2008, 99(8):1503-1517
[10] Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 1996, 58(1):267-288
[11] Leo Breiman. Better Subset Regression Using the Nonnegative Garrote. American Society for Quality Control and American Statistical Association, 1995
[12] Breiman L. Better Subset Regression Using the Nonnegative Garrote. Technometrics, 1995, 37(4):373-384
[13] Henderson C R. Applications of linear models in animal breeding. Applications of Linear Models in Animal Breeding, 1984
[14] Piepho H P. Ridge Regression and Extensions for Genomewide Selection in Maize. Crop Science, 2009, 49(4):1165-1176
[15] Whittaker J C, Thompson R, Denham M C. Marker-assisted selection using ridge regression. Annals of Human Genetics, 1999, 63(4):249
[16] Berlinet A, Thomas-Agnan C. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer US, 2004
[17] Steinwart I. Mercer's Theorem on General Domains:On the Interaction between Measures, Kernels, and RKHSs. Constructive Approximation, 2012, 35(3):363-417
[18] Franklin J. The elements of statistical learning:data mining, inference and prediction. Mathematical Intelligencer, 2010, 99(466):567-567
[19] Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3):273-297
[20] Flannery B P, Flannery B P, Teukolsky S A, et al. Numerical recipes:the art of scientific computing. Cambridge University Press, 1986
[21] Hao N, Zhang H H. Interaction Screening for Ultra-High Dimensional Data. Journal of the American Statistical Association, 2014, 109(507):1285-1301
[22] Li J, Zhong W, Li R, Wu R. A Fast Algorithm for Detecting Gene-gene Interactions in Genome-wide Association Studies. Ann Appl Stat, 2014, 8(4):2292-2318
[23] Kong Y, Li D, Fan Y, et al. Interaction pursuit in high-dimensional multi-response regression via distance correlation. Annals of Statistics, 2017, 45(2):897-922
[24] Zhang Y, Thomas C L, Xiang J, et al. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci. Rep., 2016, 6:33113
[25] Li R, Zhong W, Zhu L. Feature Screening via Distance Correlation Learning. Journal of the American Statistical Association, 2012, 107(499):1129
[26] Li L, Long Y, Zhang L, et al. Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-throughput Genotyping Technique in Brassica napus L. Plos One, 2015, 10(3):e0119425

[1]邱明悦, 胡涛, 崔恒建. 双区间删失下新冠病毒肺炎潜伏期分布的参数估计[J]. 应用数学学报, 2020, 43(2): 200-210.
[2]孙小丹, 霍希, 吴建宏. 关于大规模使用康复者血浆治疗COVID-19重症患者的模拟研究[J]. 应用数学学报, 2020, 43(2): 211-226.
[3]李倩, 肖燕妮, 吴建宏, 唐三一. COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析[J]. 应用数学学报, 2020, 43(2): 238-250.
[4]何其祥, 林仁鑫. 失效原因缺失的加速失效时间模型下竞争风险数据的半参数估计[J]. 应用数学学报, 2019, 42(3): 385-399.
[5]雷庆祝, 秦永松. 强混合样本下非参数回归函数的经验似然推断[J]. 应用数学学报, 2019, 42(2): 179-196.
[6]李永明, 周勇. 基于右删失宽相依数据的Kaplan-Meier估计和风险率估计的渐近性质[J]. 应用数学学报, 2019, 42(1): 71-84.
[7]杜彦斌, 戴家佳, 金君. 复发事件下一类加性乘性转移模型[J]. 应用数学学报, 2018, 41(5): 642-652.
[8]孟维维, 李俊平. 带灾难和移民的n维分枝过程[J]. 应用数学学报, 2018, 41(5): 609-619.
[9]魏玲, 孟庆余. 一类非线性随机四阶抛物型方程的解的p阶矩指数稳定性[J]. 应用数学学报, 2018, 41(5): 632-641.
[10]刘君娥, 周洁. Case-cohort设计下多类型事件数据的一类有效估计[J]. 应用数学学报, 2018, 41(4): 433-446.
[11]刘华, 杨鹏, 谢梅, 冶建华, 马明, 魏玉梅. 基于生灭过程的多斑块毒杂草入侵模型及空间模拟[J]. 应用数学学报, 2018, 41(3): 305-314.
[12]王昕, 程希明. 自回归序列的穿带率[J]. 应用数学学报, 2018, 41(3): 337-346.
[13]刘旭, 舒鑫鑫, 周勇. 不完全数据下的分位数估计[J]. 应用数学学报, 2018, 41(2): 198-214.
[14]李国军, 陈东杰, 韩一士. 带有初态误差的高阶多智能体系统一致性跟踪[J]. 应用数学学报, 2018, 41(2): 156-171.
[15]王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14659
相关话题/应用数学 基因 数据 统计 计算