删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

二维等温可压缩磁流体方程组的不可压极限

本站小编 Free考研考试/2021-12-27

二维等温可压缩磁流体方程组的不可压极限 王昕1, 胡玉玺21 北京信息科技大学理学院, 北京 100192;
2 中国矿业大学(北京)理学院, 北京 100083 Incompressible Limit of 2-d Isothermal Magnetohydrodynamic Equations Wang Xin1, HU Yuxi21 College of Science, Beijing Information Science and Technology University, Beijing 100192, China;
2 College of Science, China University of Mining and Technology, Beijing 100083, China
摘要
图/表
参考文献
相关文章(0)
点击分布统计
下载分布统计
-->

全文: PDF(348 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要我们考虑二维等温可压缩磁流体方程组的不可压极限问题.在好始值以及理想导体边界条件下,我们证明了当马赫数趋于零时,可压缩磁流体方程组的弱解收敛到不可压缩磁流体方程组的强解并且得到了相应的收敛率.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-12-02
PACS:O715.2
基金资助:国家自然科学基金(71501016,11701556)以及北京信息科技大学"勤信人才"培育计划(QXTCP B201705)资助项目.

引用本文:
王昕, 胡玉玺. 二维等温可压缩磁流体方程组的不可压极限[J]. 应用数学学报, 2019, 42(1): 85-99. Wang Xin, HU Yuxi. Incompressible Limit of 2-d Isothermal Magnetohydrodynamic Equations. Acta Mathematicae Applicatae Sinica, 2019, 42(1): 85-99.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I1/85


[1] Ducomet, B, Feireisl, E. The equations of magnetohydrodynamics:On the interaction between matter and radiation in the evolution of gaseous stars. Comm. Math. Phys., 2006, 266:595-629
[2] Fan J, Jiang, S, Nakamura G. Vanishing shear viscosity limit in the magnetohydrodynamic equations. Commun. Math. Phys., 2007, 270:691-708
[3] Hu, X, Wang, D. Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Comm. Math. Phys., 2008, 283:255-284
[4] Hu, X, Wang, D. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal., 2010, 197:203-238
[5] Li, H, Xu, X, Zhang, J. Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J. Math. Anal., 2013, 45:1356-1387
[6] Hu, X, Wang, D. Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J. Math. Anal., 2009, 41:1272-1294
[7] Jiang, S, Ju, Q C, Li, F C. Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Periodic Boundary Conditions. Comm. Math. Phys., 2010, 297:371-400
[8] Jiang S, Ju Q C, Li F C. Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients. SIAM J. Math. Anal., 2010, 42:2539-2553
[9] Feireisl E, Novotny, A, Petzeltová, H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 2001, 3:358-392
[10] Jiang S, Zhang P. Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data. Indiana Univ. Math. J., 2002, 51:345-355
[11] Jiang, S, Zhang, P. On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm. Math. Phys., 2001, 215:559-581
[12] Jiang, S, Zhang, P. Axisymmetric solutions of the 3-D Navier-Stokes equations for compressible isentropic fluids. J. Math. Pures Appl., 2003, 82:949-973
[13] Lions P L. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. New York:Oxford University Press, 1996
[14] Lions P L. Mathematical topics in fluid mechanics. Vol.2. Compressible models. New York:Oxford University Press, 1998
[15] Ebin D G. Motion of a slightly compressible fluid. Proc. Natl. Acad. Sci., 1975, 72(2):539-542
[16] Klainerman, S, Majda, A. Singular perturbations of quasilinear hyperbolic systems with large parameters and the incom-pressible limit of compressible fluids. Comm. Pure Appl. Math., 1981, 34:481-524
[17] Klainerman, S, Majda, A. Compressible and incompressible fluids. Comm. Pure Appl. Math., 1982, 35:629-653
[18] Plotnikov P I, Weigant W. Isothermal Navier-Stokes Euqations and Radon Transform, SIAM J. Math. Anal., 2015, 47:626-653

没有找到本文相关文献



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14593
相关话题/北京 统计 理学院 文献 应用数学