删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一维六方准晶材料中双周期裂纹反平面问题

本站小编 Free考研考试/2021-12-27

一维六方准晶材料中双周期裂纹反平面问题 常莉红1, 时朋朋2, 崔江彦21. 宝鸡文理学院, 数学与信息科学学院, 宝鸡 7210013;
2. 宁夏大学, 数学与计算机学院, 银川 750021 The Antiplane Problem of a One-dimensional Hexagonal Quasicrystals with Doubly Periodic Cracks CHANG Lihong1, SHI Pengpeng2, CUI Jiangyan21. Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 7210013, China;
2. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China
摘要
图/表
参考文献(0)
相关文章(3)
点击分布统计
下载分布统计
-->

全文: PDF(352 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文讨论了无限大一维六方准晶材料中基本胞元含有中心位于等腰三角形顶点的双周期排布裂纹的反平面问题。充分考虑问题的双周期对称性,利用双周期椭圆函数构造的保角变化和施瓦兹公式得到该问题声子场和相位子场的闭合解,进而讨论裂纹尖端的强度因子.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-03-31
PACS:O346
基金资助:国家自然科学基金资助项目(61271294,61472303,61271452,61472257),陕西省教育厅项目(2013JM1001)资助.
引用本文:
常莉红, 时朋朋, 崔江彦. 一维六方准晶材料中双周期裂纹反平面问题[J]. 应用数学学报, 2017, 40(4): 489-496. CHANG Lihong, SHI Pengpeng, CUI Jiangyan. The Antiplane Problem of a One-dimensional Hexagonal Quasicrystals with Doubly Periodic Cracks. Acta Mathematicae Applicatae Sinica, 2017, 40(4): 489-496.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I4/489


[1] Fan T Y. Mathematical theory of elasticity of quasicrystals and its applications. Beijing:Science Press, 2010
[2] Peng Y Z, Fan T Y. Crack and indentation problems for one-dimensional hexagonal quasicrystals. The European Physical Journal B, 2001, 1:39-44
[3] Liu G T, He Q L, Guo R P. The plane strain theory for one-dimensional hexagonal quasicrystals in aperiodical plane. Acta Physica Sinica, 2009, 6:S118-S123
[4] 路见可. 双周期平面弹性理论中的复Airy函数. 数学杂志, 1996, 6(6):321-330(Lu Jianke. The complex Airy functions for the doubly-periodic plane elasticity theory. Journal of Mathematics, 19966(6):321-330)
[5] 郑可. 带裂缝的双周期各向异性平面弹性基本问题. 应用数学与计算数学学报, 1993, 7(1):14-20(Zheng Ke. On the fundamental problems in an anisotropic plane with a doubly-periodic set cracks. Communication on Applied Mathematics and Computation, 1993, 7(1):14-20)
[6] 张军好. 带双周期裂缝的各向异性弹性平面基本问题(1). 中南民族大学学报 (自然科学版), 2004(23):91-101(Zhang Junhao. On the Periodic Cracks Problems in an Infinite Anisotropic Elastic Plane with Different Materials (I). Journal of South-Central University for Nationalities (Nat. Sci. Edition), 2004(23):91-101)
[7] Xiao J H, Jiang C P. Exact solution for orthotropic materials weakened by doubly periodic cracks of unequal size under antiplane shear. Acta Mechanica Solida Sinica, 2009, 22(1):53-63
[8] 郝天护. 双周期裂纹反平面问题的一个闭合解. 清华大学学报, 1979, 19(3):11-18(Hao Tianhu. An closed form solutions for the antiplane problem of double period cracks. Journal of Tsinghua University, 1979, 19(3):11-18)
[9] Li X. Applications of doubly quasi-periodic boundary value problems in elasticity theory. Aachen:Shaker Verlag, 2001
[10] 徐耀玲, 沈艳芝, 杨勇. 电磁弹性材料双周期裂纹反平面问题的精确解. 兵器材料科学与工程, 2009, 32(1):17-20(Xu Yaoling, Shen Yanzhi, Yang Yong. An exact solution to the antiplane problem of doubly periodic cracks in magnetoelectroelastic materials. Ordnance Material Science and Engineering, 2009, 32(1):17-20)
[11] Tong Z H, Jiang C P, Lo S H, Cheung Y K. A closed form solution to the antiplane problem of doubly periodic cracks of unequal size in piezoelectric materials. Mechanics of Materials, 2006, 38:269-286
[12] 常莉红, 丁生虎, 李星. 压电材料中双周期裂纹的反平面应变问题. 宁夏大学学报, 2011, 32(1):10-14(Chang Lihong, Ding Shenghu, Li Xing. Anti-plane problems of doubly periodic cracks in piezoelectric materials. Journal of Ningxia University, 2011, 32(1):10-14)
[13] 阿希泽雨H H著, 刘书琴译. 椭圆函数论纲要. 上海:商务印书馆, 1900
[14] Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity. Cambridge:Cambridge University Press, 1953

[1]施志昱, 刘官厅. 点群6一维六方准晶狭长体中有限长Griffith裂纹的反平面问题[J]. 应用数学学报(英文版), 2013, 36(3): 532-540.
[2]贾红刚, 聂玉峰. 各向异性板半无限裂纹平面问题的保角变换解法[J]. 应用数学学报(英文版), 2013, 36(2): 243-248.
[3]庞之垣. 两种介质各阶应力强度因子的直接积分表达(Ⅱ):一般情况[J]. 应用数学学报(英文版), 1996, 19(2): 263-270.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14342
相关话题/材料 应用数学 数学 统计 宁夏大学