删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

自然增长下次椭圆A-调和方程的Hölder连续性估计

本站小编 Free考研考试/2021-12-27

自然增长下次椭圆A-调和方程的Hölder连续性估计 于海燕1,2, 王洁2, 郑神州21. 内蒙古民族大学数学学院, 通辽 028043;
2. 北京交通大学理学院, 北京 100044 Hölder Continuity to Subelliptic A-Harmonic Equations Under the Natural Growth YU Haiyan1,2, ANG Jie2, ZHENG Shenzhou21. College of Mathematics, Inner Mongolia University for the Nationalities, Tongliao 028043, China;
2. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
摘要
图/表
参考文献(0)
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(342 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要通过Moser-Nash迭代方法并结合密度引理,研究了一类A-调和型次椭圆方程在自然增长下的有界弱解的局部Hölder连续性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-12-31
PACS:O175.25
基金资助:国家自然科学基金(11371050)资助项目.
引用本文:
于海燕, 王洁, 郑神州. 自然增长下次椭圆A-调和方程的Hölder连续性估计[J]. 应用数学学报, 2016, 39(5): 689-700. YU Haiyan, ANG Jie, ZHENG Shenzhou. Hölder Continuity to Subelliptic A-Harmonic Equations Under the Natural Growth. Acta Mathematicae Applicatae Sinica, 2016, 39(5): 689-700.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I5/689


[1] Capogna L, Garofalo N. Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type. J. Eur. Math. Soc., 2003, 5(1):1-40
[2] Garofalo N, Nhieu D M. Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minmal surfaces. Comm. Pure Appl. Math., 1996, 49(10):1081-1144
[3] Hörmander L. Hypoelliptic second order differential equations. Acta Math., 1967, 119:147-171
[4] Folland G. A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc., 1973, 79:373-376
[5] Nagel A, Stein E, Wainger S. Balls and metrics defined by vector fields I:basic properties. Acta Math., 1985, 155:103-147
[6] Rothschild L, Stein E. Hypoelliptic operators and nilpotent Lie groups. Acta Math., 1977, 137:247-320
[7] Citti, L., Garofalo, N., Lanconelli, E. Harnack's inequality for sum of squares of vector fields plus a potential. Amer. J. Math., 1993, 115:699-734
[8] Di Fazio G, Fanciullo M S, Zamboni P. Harnack inequality for a class of strongly degenerate elliptic operators formed by Hömander vector fields. Manuscripta Math., 2011, 135:361-380
[9] Di Fazio G, Fanciullo M S, Zamboni P. Harnack inequality and smoothness for quasilinear degenerate elliptic equations. J. Differential Equations, 2008, 245:2939-2957
[10] Ferrari F. Harnack inequality for two-weight subelliptic p-Laplace operators. Math. Nachr., 2006279(8):815-830
[11] Zamboni, P. The Harnack inequality for quasilinear elliptic equations under minimal assumptions. Manuscripta Math., 2000, 102(3):311-323
[12] Zamboni P. Höder continuity for solutions of linear degenerate elliptic equations under minimal assumptions. J. Differ. Equ., 2002, 182(1):121-140
[13] Di Fazio G, Zamboni P. Regularity for quasilinear degenerate elliptic equations. Math. Z., 2006, 253:787-803
[14] Zheng S, Zheng X, Feng Z. Optimal regularity for A-harmonic type equations under the natural growth. Discrete Contin. Dyn. Syst. Ser. B., 2011, 16(2):669-685
[15] Uhlenbeck K. Regularity for a class of nonlinear elliptic systems. Acta Math., 1977, 138:219-240
[16] Acerbi E, Fusco N. Regularity of minimizers of non-quadratic functionals, the case 1J. Math. Anal. Appl., 1989, 140:115-135
[17] Dibenedetto E. C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. (TMA), 1983, 7:827-850
[18] Tolksdorff P. Everywhere-regularity for some quasilinear systems with a lack of ellipticity. Ann. Mat. Pura Appl., 1983, 134(4):241-266
[19] Heinonen J, Kilpeläinen T, Martio O. Nonlinear potential theory of degenerate elliptic equations. Oxford:Oxford University Press, 1993
[20] Duzaar F, Grotowski J F. Partial regularity for nonlinear elliptic systems:the method of A-harmonic approximation. Manuscripta Math., 2000, 103:267-298
[21] Chen, S., Tan, Z. Optimal partial regularity for nonlinear sub-elliptic systems. J. Math. Anal. Appl., 2012, 387:166-180
[22] Wang J, Liao D. Optimal partial regularity for sub-elliptic systems with sub-quadratic growth in Carnot groups. Nonlinear Analysis, 2012, 75:2499-2519
[23] Zheng, S., Feng, Z. Green functions for a class of nonlinear degenerate operators with X-ellipticity. Trans. Amer. Math. Soc., 2012, 364(7):3627-3655

[1]杨孝平. 关于含非凸约束的变分问题[J]. 应用数学学报(英文版), 1996, 19(4): 533-540.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14205
相关话题/自然 应用数学 统计 内蒙古民族大学 北京