删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

碳排放权交易约束下供应链网络成员企业微分博弈分析

本站小编 Free考研考试/2021-12-27

杨玉香,张宝友,孟丽君
中国计量大学经济与管理学院, 杭州 310018
出版日期:2018-10-25发布日期:2018-12-06




Differential Game Analysis of Member Firms for Supply Chain Network Under Marketable Carbon Emission Permits

YANG Yuxiang ,ZHANG Baoyou, MENG Lijun
China Jiliang University, College of Economics and Management, Hangzhou 310018
Online:2018-10-25Published:2018-12-06







摘要



编辑推荐
-->


考虑碳排放权交易下多个制造商和多个需求区域的供应链网络结构,从长期、动态的角度研究供应链网络成员企业在碳排放权交易约束下的决策行为,分析成员企业间的非合作竞争关系,构建基于微分变分不等式的连续时间动态模型,并将其转化为等价的非线性互补问题,在此基础上,提出逐步线性化求解方法.最后通过算例在整个规划期内分析不同的生产成本对各成员产品生产率、碳排放率、碳减排投资率、碳排放存量、碳排放许可数量及产品价格和许可证价格的影响,并分析环境成本的变化对制造商碳减排投资率的影响.

分享此文:


()


[1]杨璐,张成科,朱怀念. 带泊松跳的线性Markov切换系统的随机微分博弈及在金融市场中的应用[J]. 系统科学与数学, 2018, 38(5): 537-552.
[2]曹铭, 朱怀念, 张成科, 程硕. 奇异随机Markov跳变系统的$N$人Nash博弈问题[J]. 系统科学与数学, 2017, 37(3): 700-712.
[3]杨鹏. 具有交易费用和负债的随机微分博弈[J]. 系统科学与数学, 2016, 36(7): 1040-1045.
[4]仇翔,俞立,刘安东. 时滞供应链网络系统的牛鞭效应切换控制方法[J]. 系统科学与数学, 2016, 36(6): 810-821.
[5]熊清伟,魏平. 基于多Agent供应链网络企业竞合关系演化分析[J]. 系统科学与数学, 2015, 35(7): 779-787.
[6]仇翔,俞立,刘安东. 时滞供应链网络系统的切换模型预测控制方法[J]. 系统科学与数学, 2015, 35(4): 407-418.
[7]杨康,张仲义. 基于节点重要性的供应链网络风险跨层次评估研究[J]. 系统科学与数学, 2015, 35(1): 110-120.
[8]朱怀念,植璟涵,张成科,宾宁. 带Markov切换参数的线性二次零和随机微分博弈[J]. 系统科学与数学, 2013, 33(12): 1391-1403.
[9]杨康,张仲义. 基于复杂网络理论的供应链网络风险传播机理研究[J]. 系统科学与数学, 2013, 33(10): 1224-1232.
[10]仇莉. 具有随机需求的供应链网络缺货概率的计算方法[J]. 系统科学与数学, 2012, 32(9): 1062-1071.
[11]周岩,胡劲松,赵海瑞,逢晓敏. 具有产能约束和价格干预的闭环供应链网络双渠道均衡[J]. 系统科学与数学, 2012, 32(9): 1072-1091.
[12]杨玉香,黄祖庆,周根贵. 集权制下闭环供应链网络最优内生污染税问题[J]. 系统科学与数学, 2012, 32(11): 1354-1365.
[13]张浩,杨浩雄,郭金龙. 供应链网络可靠性的多层Bayes估计模型[J]. 系统科学与数学, 2012, 32(1): 45-52.
[14]周根贵,杨玉香. 闭环供应链网络设施Stackelberg 对策问题[J]. 系统科学与数学, 2011, 31(11): 1491-1503.

-->

PDF全文下载地址:

http://sysmath.com/jweb_xtkxysx/CN/article/downloadArticleFile.do?attachType=PDF&id=13465
相关话题/系统 科学 数学 网络 控制