[1] Brussard P J, Glaudemants P W. Shell Model Applications in Nuclear Spectroscopy[M]. New York:Elsevier, 1977. [2] Hald O. On Discrete and numerical Sturm-Liouville Problems[D]. Ph. D dissertation. New York:Dept. Mathematics, New York University, 1970. [3] Gladwell G M L. inverse problems in vibration[J]. Appl. Mech. Rev, 1986, 39:1013-1018. [4] Parker R L, Whaler K A. Numerical methods for establishing solutions to the inverse problem of electromagnetic induction[J]. J.Geophys.Res, 1981, 86:9574-9584. [5] Joseph K T. Inverse eigenvalue problem in structural design[J]. AIAA J, 1992, 30:2890-2896. [6] Ravi M S, Rosenthal J, Wang X A. On decentralized dynamic pole placement and feedback stabilization[J]. IEEE Trans. Automat.Control, 1995, 40:1603-1614. [7] Trench W F. Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices[J]. SIAM J. Sci. Comput. 1997, 18:1722-1736. [8] Aishima K. A quadratically convergent algorithm based on matrix equations for inverse eigenvalue problems[J]. Linear Algebra Appl, 2018, 542:310-333. [9] Friedland S, Nocedal J, Overton M L. The formulation and analysis of numerical methods for inverse eigenvalue problems[J]. SIAM J. Numer. Anal, 1987, 24:634-667. [10] Chan R H, Chung H L, Xu S F. The inexact Newton-like method for inverse eigenvalue problem[J]. BIT, 2003, 43:7-20. [11] Bai Z J, Chan R H, Morini B. An inexact Cayley transform method for inverse eigenvalue problem[J]. Inverse Probl, 2004, 20:1675-1689. [12] Ezquerro J A, Hernández M A. The Ulm method under mild differentiability conditions[J]. Numer. Math, 2008, 109:193-207. [13] Ulm S. On iterative method with successive approximation of the inverse oprator[J]. Izv. Akad. Nauk. Est. SSR, 1967, 16:403-411. [14] Gutiérrez J M, Hernandez M A, Romero N. A note on a modification of Moser s method[J]. Journal of Complexity, 2008, 24:185-197. [15] Shen W P, Li C, Jin X Q. An Ulm-like method for inverse eigenvalue problems[J]. Appl. Numer. Math, 2011, 61:356-357. [16] Shen W P, Li C. An Ulm-like Cayley transform method for inverse eigenvalue problems[J]. Taiwan.J. Math, 2012, 16:367-386. [17] 徐成贤,陈志平,李乃成.近代优化方法[M].北京:科学出版社,2002. [18] Golub G H, Van Loan C F, Matrix Computations. 3th ed[M]. The Johns Hopkins University Press, Baltimore, 1996. [19] Chan R H, Xu S F, Zhou H. On the convergence rate of a quasi-Newton method for inverse eigenvalue problems[J]. SIAM J. Numer. Anal., 1999, 36(2):436-441. |