[1] Burton D, Toint P L. On an instance of the inverse shortest paths problem[J]. Math. Prog., 1992, 53:45-61. [2] Burton D, Toint P L. On the use of an inverse shortest paths algorithm for recovering linearly correlated costs[J]. Math. Prog., 1994, 63:1-22. [3] Ahuja R K, Orlin J B. A faster algorithm for the inverse spanning tree problem[J]. J.Algorithm., 2000, 34(1):177-193. [4] Scott C, William L. The inverse newsvendor problem:Choosing an optimal demand portfolio for capacitated resources[J]. Manage. Sci., 2000, 46:912-927. [5] Heuberger C. Inverse combinatorial optimization:A survey on problems, methods and results[J]. J. Combin. Optim., 2004, 8:329-361. [6] Zhang J, Liu Z. Calculating some inverse linear programming problems[J]. J. Comput. Appl. Math., 1996, 72:261-273. [7] Zhang J, Liu Z. A further study on inverse linear programming problems[J]. J. Comput. Appl. Math., 1999, 106:345-359. [8] Jiang Y, Xiao X, Zhang L, et al. A perturbation approach for a type of inverse linear programming problems[J]. Int. J. Comput. Math., 2011, 88(3):508-516. [9] Iyengar G, Kang W. Inverse conic programming with applications[J]. Oper. Res. Lett., 2005, 33:319-330. [10] Zhang J, Zhang L. An augmented lagrangian method for a class of inverse quadratic programming problems[J]. Appl. Math. Optim., 2010, 61:57-83. [11] 卢越, 张继宏, 张立卫. 一类二次规划逆问题的交替方向数值方法[J]. 运筹学学报, 2014, 18(2):1-16. [12] Xiao X, Zhang L, Zhang J. A smoothing newton method for a type of inverse semi-definite quadratic programming problem[J]. J. Comput. Appl. Math., 2009, 223:485-498. [13] Wu J, Zhang Y, Zhang L, et al. A sequential convex program approach to an inverse linear semidefinite programming problem[J]. Asia. Pac. J. Oper. Res., 2016, 33(4):1-26. [14] Lu Y, Huang M, Zhang Y, et al. A nonconvex admm for a class of sparse inverse semidefinite quadratic programming problems[J]. Optimization, 2019, 68(6):1075-1105. [15] He B, Tao M, Yuan X. Alternating direction method with gaussian back substitution for separable convex programming[J]. SIAM J. Opiomiz., 2012, 22(2):313-340. [16] Rockafellar R T. Convex analysis[M]. Princeton:Princeton University Press, 1970. [17] John D, Shai S S, Yoram S, et al. Efficient projections onto the 1-ball for learning in high dimensions[C]//Proceedings of the 25th International Conference on Machine Learning.[S.l.:s.n.], 2008. [18] Hestenes M R. Multiplier and gradient methods[J]. J. Optimiz Theory. App., 1969, 4(5):303-320. [19] Powell M. A method for nonlinear constraints in minimization problems[M]//R. F. Optimization. New York:Academic Press, 1969:283-298. [20] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[M].[S.l.]:NOW, 2011. [21] Eckstein J, P.Bertsekas D. On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators[J]. Math. Prog., 1992, 55:293-318. [22] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Comput. Math. Appl., 1976, 2(1):17-40. [23] Han D, Yuan X. A note on the alternating direction method of multipliers[J]. J. Optim. Theory Appl., 2012, 155:227-238. [24] Cai X, Han D, Yuan X. The direct extension of admm for three-block separable convex minimization models is convergent when one function is strongly convex[J]. Optimization online, 2014. [25] Li M, Sun D, Toh K C. A convergent 3-block semi-proximal admm for convex minimization problems with one strongly convex block[J]. Asia. Pac. J. Oper. RES., 2015, 32(04):1550024. [26] He B, Wang S, Yang H. A modified variable-penalty alternating directions method for monotone variational inequalities[J]. J. Comput. Math, 2003, 21:495-504. [27] He B S, Yang H, Wang S L. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities[J]. J. Optim. Theory Appl., 2000, 106:337-356. [28] 李姣芬, 宋丹丹, 李涛, 等. 核范数和谱范数下广义Sylvester方程最小二乘问题的有效算法[J]. 计算数学, 2017, 39:129-150. [29] 蔡文银, 徐玲玲. 核范数和谱范数下广义Sylvester方程最小二乘问题的一类改进算法[J]. 计算数学, 2018, 40:387-401. |