[1] M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem[J], Numer. Math., 33(1979), 367-383.[2] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems[J], SIAM J. Numer. Anal., 39(2002), 1749-1779.[3] D. N. Arnold, F. Brezzi, and J. Douglas, PEERS, a new mixed finite element for plane elasticity[J], Japan J. Appl. Math., 1(1984), 347-367.[4] D. N. Arnold and R. S. Falk, Well-posedness of the fundamental boundary value problems for constained anisotropic elastic materials[J]. Arch. Rational Mech. Anal., 98(1987), 143-165.[5] D. N. Arnold and R. Winther, Nonconforming mixed elements for elasticity, Dedicated to Jim Douglas, Jr. on the occasion of his 75th birthday[J]. Math. Models Methods Appl. Sci., 13(2003), 295-307.[6] I. Babuška and M. Suri, Locking effects in the finite element approximation of elasticity problems[J]. Numer. Math., 62(1992), 439-463.[7] G. Bao, Y. Cao, Y. Hao, and K. Zhang, A robust numerical method for the random interface grating problem via shape calculus, weak Galerkin method, and low-rank approximation[J]. J. Sci. Comp.,(2018), 1-24.[8] V. L. Beirão da, F. Brezzi, A. Cangiani, L. D. Marini, and A. Russo, Basic principles of virtual element methods[J]. Math. Models Methods Appl. Sci., 23(1)(2013), 199-214.[9] V. L. Beirão da, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity problems[J]. SIAM J. Numer. Anal., 51(2013), 794-812.[10] S. C. Brenner, Korn's inequalities for piecewise H1 vector fields[J]. Math. Comp., 73(2003), 1067-1087.[11] S. C. Brenner and L. Y. Sung, Linear finite element methods for planar linear elasticity[J]. Math. Comp., 59(1992), 321-338.[12] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J]. Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér., 8 (1974), 129-151.[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods[M]. Springer-Verlag, New York, 1991.[14] F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[J]. SIAM J. Numer. Anal., 43(5)(2005), 1872-1896.[15] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations, with application to linear elasticity[J]. SIAM J. Numer. Anal., 34(1997), 1727-1741.[16] G. Chen, M. Feng, and X. Xie, Robust globally divergence-free weak Galerkin methods for Stokes equations[J]. J. Comput. Math., 34(2016), 549-572.[17] G. Chen and X. Xie, A robust weak Galerkin finite element method for linear elasticity with strong symmeric stresses[J]. Comput. Methods Appl. Math., 16(2016), 389-408.[18] L. Chen, J. Wang, Y. Wang, and X. Ye, An auxiliary space multigrid preconditioner for the weak Galerkin method[J]. Comput. Math. Appl., 70(4)(2015), 330-344.[19] B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire, and F. Sayas, Analysis of HDG methods for Stokes flow[J]. Math. Comput., 80(274)(2011), 723-760.[20] Q. Guan, M. Gunzburger, and W. Zhao, Weak Galerkin finite element methods for a second-order elliptic variational inequality[J]. Comput. Methods Appl. Mech. Engrg., 337(2018), 677-688.[21] Y. Han, H. Li, and X. Xie, Robust globally divergence-free weak Galerkin finite element methods for unsteady natural convection problems[J]. Numer. Math. Theory Methods Appl., 12(4)(2019), 1266-1308.[22] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's methods[J]. Comput. Methods Appl. Mech. Engrg., 191(17- 18),(2002), 1895-1908.[23] G. Harper, J. Liu, S. Tavener, and B. Zheng, Lowest-Order weak Galerkin finite element methods for linear elasticity on rectangular and brick meshes[J]. J. Sci. Comp., 78(1917-1941),(2019), 1895-1908.[24] J. Hu, A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation[J]. SIAM J. Numer. Anal., 53(3)(2015), 1438-1463.[25] J. Hu, Finite element approximations of symmetric tensors on simplicial grids in Rn:the higher order case[J]. J. Comput. Math., 33(2)(2015), 283-296.[26] J. Hu and S. Zhang, A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids[J]. Sci. China Math., 58(2)(2015), 297-307.[27] J. Hu and S. Zhang, Finite element approximations of symmetric tensors on simplicial grids in Rn:the lower order case[J]. Math. Models Methods Appl. Sci., 26(9)(2016), 1649-1669.[28] X. Hu, L. Mu, and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations[J]. J. Comput. Appl. Math., 362(2019), 614-625.[29] Y. Huang, J. Li, and D. Li, Developing weak Galerkin finite element methods for the wave equation[J]. Numer. Methods Partial Differential Equations, 33(3)(2017), 868-884.[30] A. Klawonn and O. B. Widlund, Dual-primal FETI methods for linear elasticity[J]. Comm. Pure Appl. Math., 59(2006), 1523-1572.[31] C. O. Lee, J. Lee, and D. Sheen, A locking-free nonconforming finite element method for planar linear elasticity[J]. Challenges in computational mathematics (Pohang, 2001). Adv. Comput. Math., 19(2003), 277-291.[32] R. J. LeVeque, Finite-volume methods for non-linear elasticity in heterogeneous media[J]. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001). Internat. J. Numer. Methods Fluids, 40(2002), 93-104.[33] B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems[J]. J. Comput. Appl. Math., 287(2015), 179-195[34] B. Li, X. Xie, and S. Zhang, BPS preconditioners for a weak Galerkin finite element method for 2D diffusion problems with strongly discontinuous coefficients[J]. Comp. Math. Appl., 76(4) (2018), 701-724.[35] G. Li, Y. Chen, and Y. Huang, A new weak Galerkin finite element scheme for general second-order elliptic problems[J]. J. Comput. Appl. Math., 344(2018), 701-715.[36] H. Li, L. Mu, and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes[J]. Commun. Comput. Phys., 26(2)(2019), 558-578.[37] J. Liu, S. Tavener, and Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes[J]. SIAM J. Sci. Comput., 40(5)(2018), B1229-B1252.[38] X. Liu, J. Li, and Z. Chen, A weak Galerkin finite element method for the Navier-Stokes equations[J]. J. Comput. Appl. Math., 333(2018), 442-457.[39] Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation[J]. J. Comput. Appl. Math., 361(2019), 176-206.[40] L. Mu, A priori and a posterior error estimate of new weak Galerkin finite element methods for second order elliptic interface problems on polygonal meshes[J]. J. Comput. Appl. Math., 362 (2019), 423-442.[41] L. Mu, J. Wang, and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods[J]. J. Comput. Phys., 273(2014), 327-342.[42] L. Mu, J. Wang, and X. Ye, Weak Galerkin finite element methods on polytopal meshes[J]. Int. J. Numer. Anal. Model., 12(2015), 31-53.[43] L. Mu, J. Wang, and X. Ye, A least-squares-based weak Galerkinfinite element method for second order elliptic equations[J]. SIAM J. Sci. Comput., 39(4)(2017), A1531-A1557.[44] L. Mu, J. Wang, X. Ye, and S. Zhang, A C0-weak Galerkin finite element method for the biharmonic equation[J]. J. Sci. Comput., 59(2014), 473-495.[45] L. Mu and X. Zhang, An immersed weak Galerkin method for elliptic interface problems[J]. J. Comput. Appl. Math., 362(2019), 471-483.[46] J. A. Nitsche, On Korn's second inequality[J]. RAIRO, Analyse Numerique, 15(1981), 237-248.[47] H. Peng, X. Wang, Q. Zhai, and R. Zhang, A weak Galerkin finite element method for the elliptic variational inequality[J]. Numer. Math. Theory Methods Appl., 12(3)(2019), 923-941.[48] H. X. Rui and M. Sun, A locking-free finite difference method on staggered grids for linear elasticity problems[J]. Comput. Math. Appl., 76(2018), 1301-1320.[49] W. Shao, S. Sun, and Y. Wang, An economical cascadic multigrid method for the weak Galerkin finite element approximation of second order elliptic problems[J]. J. Comput. Appl. Math., 362 (2019), 341-353.[50] S. C. Soon, B. Cockburn, and H. K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity[J]. Internat. J. Numer. Methods Engrg., 80(2009), 1058-1092.[51] M. Sun and H. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity[J]., Comput. Math. Appl., 73(5)(2017), 804-823.[52] J. Sun, Q. Zhang, and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem, BIT, 59(4)(2019), 1093-1114.[53] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials, Numerische Mathematik, 41(1983), 39-53.[54] C. Wang and J. Wang, Primal-dual weak Galerkin finite element methods for elliptic Cauchy problems, Comput. Math. Appl., 79(3)(2020), 746-763.[55] C. Wang, J. Wang, R. Wang, and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307(2016), 346-366.[56] J. Wang, R. Wang, Q. Zhai, and R. Zhang, A systematic study on weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 74(2018), 1369-1396.[57] J. Wang and X. Ye A weak Galerkin finite element method for second-order elliptic problems[J]. J. Comput. Appl. Math., 241(2013), 103-115.[58] J. Wang and X. Ye A weak Galerkin mixed finite element method for second order elliptic problems[J]. Math. Comp., 83(2014), 2101-2126.[59] J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations[J]. Adv. Comput. Math., 42(2016), 155-174.[60] J. Wang, X. Ye, Q. Zhai, and R. Zhang, Discrete maximum principle for the P1-P0 weak Galerkin finite element approximations[J]. J. Comput. Phys., 362(2018), 114-130.[61] J. Wang, Q. Zhai, R. Zhang, and S. Zhang, A weak Galerkin finite element scheme for the CahnHilliard equation.[J]. Math. Comp., 88(2019), 211-235.[62] R. Wang, X. Wang, Q. Zhai, and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations[J]. J. Comput. Appl. Math., 302(2016), 171-185.[63] R. Wang, X. Wang, K. Zhang, and Q. Zhou, Hybridized weak Galerkin finite element method for the linear elasticity problem in mixed form[J]. Front. Math. China, 13(2018), 1121-1140.[64] R. Wang and R. Zhang, A weak Galerkin finite element method for the linear elasticity problem in mixed form[J]. J. Comp. Math., 36(2018), 469-491.[65] R. Wang, R. Zhang, X. Zhang, and Z. Zhang, Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin method[J]. Numer. Methods Partial Differential Equation, 34(2018), 317-335.[66] X. Wang, Q. Zhai, R. Wang, and R. Jari, An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem[J]. Appl. Math. Comput., 331(2018), 20-32.[67] X. Wang, Q. Zhai, and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow[J]. J. Comput. Appl. Math., 307(2016), 13-24.[68] Z. Wang, G. Harper, P. O'Leary, J. Liu, and S. Tavener, Deal.II implementation of a weak Galerkin finite element solver for Darcy flow[J]. Computational science—ICCS,(2019), Part IV, 495-509.[69] T. P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[J]. Math. Comp., 75(2006), 1087-1102.[70] S. Y. Yi, A lowest-order weak Galerkin method for linear elasticity[J]. J. Comput. Appl. Math., 350(2019), 286-298.[71] Q. Zhai, H. Xie, R. Zhang, and Z. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem[J]. J. Sci. Comput., 79(2)(2019), 914-934.[72] Q. Zhai, H. Xie, R. Zhang, and Z. Zhang, The weak Galerkin method for elliptic eigenvalue problems[J]. Commun. Comput. Phys., 26(1)(2019), 160-191.[73] Q. Zhai and R. Zhang, Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes[J]. Discrete Contin. Dyn. Syst. Ser. B, 24(1)(2019), 403-413.[74] Q. Zhai, R. Zhang, and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model[J]. Commun. Comput. Phys., 19(2016), 1409-1434.[75] J. Zhang, K. Zhang, J. Li, and X. Wang, A weak Galerkin finite element method for the NavierStokes equations[J]. Commun. Comput. Phys., 23(3)(2018), 706-746.[76] L. Zhang, M. Feng, and J. Zhang, A modified weak Galerkin method for Stokes equations[J]. Adv. Appl. Math. Mech., 11(4)(2019), 890-910.[77] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order[J]. J. Sci. Comput., 64(2015), 559-585.[78] T. Zhang and Y.Chen, An analysis of the weak Galerkin finite element method for convectiondiffusion equations[J]. Appl. Math. Comput., 346(2019), 612-621.[79] T. Zhang and T. Lin, The weak Galerkin finite element method for incompressible flow[J]. J. Math. Anal. Appl., 464(1)(2018), 247-265.[80] T. Zhang and T. Lin, An analysis of a weak Galerkin finite element method for stationary NavierStokes problems[J]. J. Comput. Appl. Math., 362(2019), 484-497.[81] X. Zheng and X. Xie, A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem[J]. East Asian J. Appl. Math., 7(3)(2017), 508-529.[82] J. Zhou, D. Xu, and H. Chen, A weak Galerkin finite element method for multi-term timefractional diffusion equations[J]. East Asian J. Appl. Math., 8(1)(2018), 181-193.[83] S. Zhou, F. Gao, B. Li, and Z. Sun, Weak Galerkin finite element method with second-order accuracy in time for parabolic problems[J]. Appl. Math. Lett., 90(2019), 118-123.[84] H. Zhu, Y. Zou, S. Chai, and C. Zhou, A weak Galerkin method with RT elements for a stochastic parabolic differential equation[J]. East Asian J. Appl. Math., 9(4)(2019), 818-830. |