[1] Adly S, Rammal H. A new method for solving second-order cone eigenvalue complementarity problems[J]. Journal of Optimization Theory and Applications, 2015, 165(2):563-585.[2] Chen Z M, Yang Q Z, Ye L. Generalized eigenvalue complementarity problem for tensors[J]. Pacific Journal of Optimization, 2017, 13(3):527-545.[3] Da Costa A P, Figueiredo I N, Júdice J J, et al. A complementarity eigenproblem in the stability analysis of finite dimensional elastic systems with frictional contact[M]//Complementarity:applications, algorithms and extensions. Springer, Boston, MA, 2001:67-83.[4] Facchinei F, Pang J S. Finite-dimensional variational inequalities and complementarity problems[M]. Springer, 2003.[5] Fan J Y, Nie J W, Zhou A W. Tensor eigenvalue complementarity problems[J]. Mathematical Programming, 2018,170(2):507-539.[6] Fernandes L M, Fukushima M, Júdice J J, et al. The second-order cone eigenvalue complementarity problem[J]. Optimization Methods and Software, 2016, 31(1):24-52.[7] Hillar C J, Lim L H. Most tensor problems are NP-hard[J]. Journal of the ACM (JACM), 2013, 60(6):45.[8] Hou J J, Ling C, He H J. A class of second-order cone eigenvalue complementarity problems for higher-order tensors[J]. Journal of the Operations Research Society of China, 2017, 5(1):45-64.[9] Jiang B, Li Z, Zhang S. On cones of nonnegative quartic forms[J]. Foundations of Computational Mathematics, 2017, 17(1):161-197.[10] Judice J J, Sherali H D, Ribeiro I M, et al. On the asymmetric eigenvalue complementarity problem[J]. Optimization Methods & Software, 2009, 24(4-5):549-568.[11] Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4):1095-1124.[12] Lavilledieu P, Seeger A. Existence de valeurs propres pour les systèmes multivoques:résultats anciens et nouveaux[J]. Ann. Sci. Math. Québec, 2001, 25:47-70.[13] Lim L H. Singular values and eigenvalues of tensors:a variational approach[C]//1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005. IEEE, 2005:129-132.[14] Ling C, He H, Qi L. On the cone eigenvalue complementarity problem for higher-order tensors[J]. Computational optimization and applications, 2016, 63(1):143-168.[15] Martins J A C, da Costa A P. Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[J]. International journal of solids and structures, 2000, 37(18):2519-2564.[16] Martins J A C, Barbarin S, Raous M, et al. Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(3-4):289-328.[17] Qi L. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40(6):1302-1324.[18] Queiroz M, Judice J, Humes Jr C. The symmetric eigenvalue complementarity problem[J]. Mathematics of Computation, 2004, 73(248):1849-1863.[19] Seeger A. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions[J]. Linear Algebra and its Applications, 1999, 292(1-3):1-14. |