[1] Roger A Horn, Charles R. Johnson. Topics in Matrix Analysis[M]. 北京:人民邮电出版社, 2005, 241-242.[2] 张凯院, 王同军. 矩阵方程AX+XB=F的参数迭代解法[J]. 工程数学学报, 2004, 21(8):6-10.[3] 张凯院, 蔡元虎. 矩阵方程AXB+CXD=F的参数迭代解法[J]. 西北大学学报, 2006, 36(1):13-16.[4] 李海合, 傅永洁. 矩阵方程AXB+CXD=F的两种参数迭代解法的讨论[J]. 天水师范学院学报, 2006, 26(5):24-25.[5] Dehghan M, Hajarian M. Two interation algorithms for solving coupled matrix equations over reflexive and anti-reflexive matrices[J]. Comput. Appl. Math., 2012, 31:353-371.[6] Ding F, Liu P X, Ding J. Iterative solutions of the generalized Sylvester matrix equation by using the hierarchical identification principle[J]. Appl. Math. Comput., 2008, 197:41-50.[7] Ding J, Liu Y J, Ding F. Iterative solutions to matrix equations of the form AiXBi=Fi[J]. Comput. Appl. Math., 2010, 59:3500-3507.[8] Li Z Y, Wang Y, Zhou B, Duan G R. Least squares solution with the minimumnorm to general matrix equatioons via iteration[J]. Appl. Math. Comput., 2010, 215:3547-3562.[9] Li Z Y, Wang Y. Interative algorithm for minimal norm least squares solution to general linear matrix equations[J]. Int. J. Comput. Math., 2010, 87:2552-2567.[10] Cai J, Chen G L. An interative algorithms for the least squares bisymmetrix solutions of the matrices equations A1XB1=C1, A2XB2=C2[J]. Math. Comput. Modelling., 2009, 50:1237-1244.[11] Cai J, Chen G L. An interative algorithms for solving a kind of constrained linear matrix equations system[J]. Comput. Appl. Math., 2009, 28:309-325.[12] Cai J, Chen G L, Liu Q B. An interative method for the bisymmetrix solutions of the consistent matrix equations A1XB1=C1, A2XB2=C2[J]. Int. J. Comput. Math., 2010, 87:2706-2715. |