[1] Goldstein A A. Convex programming in Hilbert space[J]. Bulletin of the American Mathematical Society, 1964, 70:709-710.[2] Levitin E S, Polyak B T. Constrained minimization problems[J].USSR Computational Mathematical Physics, 1966, 6:1-50.[3] Karamardian S. Generalized complementarity problem[J]. Journal of Optimization Theory and Applications, 1971, 8:161-168.[4] Bai Z Z, Evans D J. Chaotic iteration methods for the linear complementarity problems[J]. Journal of computational and Applied Mathematics, 1998, 96:127-138.[5] Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity problems[J]. SIAM Journal Matrix Analysis and Application,1999,21:67-68.[6] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications,2010, 17:917-933.[7] Bai Z Z, Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2013, 20:425-439.[8] Bai Z Z, Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numerical Algorithms, 2013, 62:59-77.[9] Dong J L, Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2009,16:129-143.[10] Xia Z C, Li C C. Modulus-based splitting iteration methods for a class of nonlinear complementarity problem[J]. Applied Mathematics and Computation, 2015, 271:34-42.[11] MA C F, Huang N. Modified modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems[J]. Applied Numerical Mathematics, 2016, 108:116-124.[12] Li R, Yin J F. Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems[J]. Numerical Algorithms, 2017, 75:339-238.[13] Li W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices[J]. Applied Mathematics Letters, 2013, 26:1159-1164.[14] Zhang L T, Li J L. The weaker convergence of modulus-based synchronous multi-splitting multiparameters methods for linear complementarity problems[J]. Computers and Mathematics with Applications, 2014, 67:1954-1959.[15] Zhang L T, Zuo X Y, Gu T X, etc. Improved convergence theorems of multi-splitting methods for the linear complementarity problem[J]. Applied Mathematics and Computation, 2014, 243:982-987.[16] Zhang L T, Zhang Y X, Gu T X, etc. New convergence of modulus-based synchronous block multi-splitting multi-parameter methods for linear complementarity problems[J].Computational and Applied Mathematics, 2017, 36:481-492.[17] Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. Academic Press, 1979.[18] Robert F, Charnay M, Musy F. Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe[J]. Aplikace Matematiky, 1975, 20:1-38.[19] Yong D M. Iterative Solulution of Large Linear Systems[M]. Academic Press, 1972.[20] Huang N, Ma C F. The modulus-based matrix splitting algorithms iteration for a class of weakly nonlinear complementarity problems[J]. Numerical Linear Algebra with Applications, 2016, 23:558-569. |