删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大规模多设施Weber问题的改进Cooper算法

本站小编 Free考研考试/2021-12-27

蒋建林, 潘蕴文
南京航空航天大学理学院, 南京 210016
收稿日期:2017-11-14出版日期:2018-12-15发布日期:2018-11-20


基金资助:国家自然科学基金(11571169).


A MODIFIED COOPER ALGORITHM FOR LARGE-SCALE MULTI-SOURCE WEBER PROBLEM

Jiang Jianlin, Pan Yunwen
Nanjing University of Aeronautics and Astronautics, College of Science, Nanjing 210016, China
Received:2017-11-14Online:2018-12-15Published:2018-11-20







摘要



编辑推荐
-->


多设施Weber问题(multi-source Weber problem,MWP)是设施选址中的重要模型之一,而Cooper算法是求解MWP最为常用的数值方法.Cooper算法包含选址步和分配步,两步交替进行直至达到局部最优解.本文对Cooper算法的选址步和分配步分别引入改进策略,提出改进Cooper算法:选址步中将Weiszfeld算法和adaptive Barzilai-Borwein (ABB)算法结合,提出收敛速度更快的ABB-Weiszfeld算法求解选址子问题;分配步中提出贪婪簇分割策略来处理退化设施,由此进一步提出具有更好性质的贪婪混合策略.数值实验表明本文提出的改进策略有效地提高了Cooper算法的计算效率,改进算法有着更好的数值表现.
MR(2010)主题分类:
90C26
90C30

分享此文:


()

[1] Drezner Z. Facility location:a survey of applications and methods[M]. Springer-Verlag, 1996.

[2] Drezner Z, Hamacher H. Facility location applications and theory[M]. DBLP, 2004.

[3] Cooper L. Solutions of generalized locational equilibrium models[J]. Journal of Regional Science, 1967, 7(1):1-18.

[4] Megiddo N, Supowit K J. On the complexity of some common geometric location problem[J]. SIAM Journal on Computing, 2006, 13(1):182-196.

[5] Gao H, Dai Y H, Tong X J. Barzilai-Borwein-like methods for the extreme eigenvalue problem[J]. Journal of Industrial & Management Optimization, 2017, 11(3):999-1019.

[6] Dai Y H, Liao L Z. R-linear convergence of the Barzilai and Borwein gradient method[J]. IMA Journal of Numerical Analysis, 2002, 22(1):1-10.

[7] Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method[J]. IMA Journal of Numerical Analysis, 1993, 13(3):321-326.

[8] Raydan M. The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem[M]. Society for Industrial and Applied Mathematics, 1997, 7:26-33.

[9] 庄杰鹏, 彭拯. 一种修正的Cauchy-Barzilai-Borwein算法[J]. 数值计算与计算机应用, 2016, 37(03):186-198.

[10] Fang X W. A direct search frame-based adaptive Barzilai-Borwein method[J]. Journal of Computational Mathematics, 2015, 33(2):179-190.

[11] Zanghirati G, Zanni L, Frassoldati G. New adaptive stepsize selections in gradient methods[J]. Journal of Industrial & Management Optimization, 2017, 4(2):299-312.

[12] Brimberg J, Mladenovic N. Degeneracy in the multi-source Weber problem[J]. Mathematical Programming, 1999, 85(1):213-220.

[13] Zanjirani F R, Hekmatfar M. Facility location:concepts, models, algorithms and case studies[J]. Applications and theory, 2009, 28(1):65-81.

[14] Weiszfeld E. Sur le point pour lequel la somme des distances de n points donn es est minimum[J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2006, 20(3):559-566.

[15] Vardi Y, Zhang C H. A modified Weiszfeld algorithm for the Fermat-Weber location problem[J]. Mathematical Programming, 2001, 90(3):559-566.

[16] Barazilai J, Borwein J M. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8(1):141-148.

[17] Fletcher R. Low storage methods for unconstrained optimization[M]. Lectures in Applied Mathematics, 1990, 26:165-179.

[18] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1):96-112.

[19] Andreani R, Birgin E G, Mart nez J M, et al. Spectral projected gradient and variable metric methods for optimization with linear inequalities[J]. IMA Journal of Numerical Analysis, 2005, 25(2):221-252.

[20] Lenys B, Marcos R. Preconditioned spectral projected gradient method on convex sets[J]. Journal of Computational Mathematics, 2005, 23(3):225-232.

[21] Birgin E G, Martinez J M, Raydan M. Nonmonotone spectral projected gradient methods for convex sets[J]. IMA Journal of Numerical Analysis, 2003, 23(23):539-559.

[22] Zhang H C, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM Journal on Optimization, 2006, 14(4):1043-1056.

[23] Zhou B, Gao L, Dai Y H. Gradient methods with adaptive step-sizes[J]. Computational Optimization & Applications, 2006, 35(1):69-86.

[24] Kuhn H W. A note on Fermat's problem[J]. Mathematical Programming, 1973, 4(1):98-107.

[25] Jiang J L, Yuan X M. A heuristic algorithm for constrained multi-source Weber problem - The variational inequality approach[J]. European Journal of Operational Research, 2008, 187(2):357-370.

[1]王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81.
[2]陈艳萍,黄云清,沈祖和. 退化椭圆问题的最小二乘混合元逼近[J]. 计算数学, 2001, 23(1): 87-94.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=279
相关话题/计算 数学 南京航空航天大学 阅读 理学院