[1] Drezner Z. Facility location:a survey of applications and methods[M]. Springer-Verlag, 1996.[2] Drezner Z, Hamacher H. Facility location applications and theory[M]. DBLP, 2004.[3] Cooper L. Solutions of generalized locational equilibrium models[J]. Journal of Regional Science, 1967, 7(1):1-18.[4] Megiddo N, Supowit K J. On the complexity of some common geometric location problem[J]. SIAM Journal on Computing, 2006, 13(1):182-196.[5] Gao H, Dai Y H, Tong X J. Barzilai-Borwein-like methods for the extreme eigenvalue problem[J]. Journal of Industrial & Management Optimization, 2017, 11(3):999-1019.[6] Dai Y H, Liao L Z. R-linear convergence of the Barzilai and Borwein gradient method[J]. IMA Journal of Numerical Analysis, 2002, 22(1):1-10.[7] Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method[J]. IMA Journal of Numerical Analysis, 1993, 13(3):321-326.[8] Raydan M. The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem[M]. Society for Industrial and Applied Mathematics, 1997, 7:26-33.[9] 庄杰鹏, 彭拯. 一种修正的Cauchy-Barzilai-Borwein算法[J]. 数值计算与计算机应用, 2016, 37(03):186-198.[10] Fang X W. A direct search frame-based adaptive Barzilai-Borwein method[J]. Journal of Computational Mathematics, 2015, 33(2):179-190.[11] Zanghirati G, Zanni L, Frassoldati G. New adaptive stepsize selections in gradient methods[J]. Journal of Industrial & Management Optimization, 2017, 4(2):299-312.[12] Brimberg J, Mladenovic N. Degeneracy in the multi-source Weber problem[J]. Mathematical Programming, 1999, 85(1):213-220.[13] Zanjirani F R, Hekmatfar M. Facility location:concepts, models, algorithms and case studies[J]. Applications and theory, 2009, 28(1):65-81.[14] Weiszfeld E. Sur le point pour lequel la somme des distances de n points donn es est minimum[J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2006, 20(3):559-566.[15] Vardi Y, Zhang C H. A modified Weiszfeld algorithm for the Fermat-Weber location problem[J]. Mathematical Programming, 2001, 90(3):559-566.[16] Barazilai J, Borwein J M. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8(1):141-148.[17] Fletcher R. Low storage methods for unconstrained optimization[M]. Lectures in Applied Mathematics, 1990, 26:165-179.[18] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1):96-112.[19] Andreani R, Birgin E G, Mart nez J M, et al. Spectral projected gradient and variable metric methods for optimization with linear inequalities[J]. IMA Journal of Numerical Analysis, 2005, 25(2):221-252.[20] Lenys B, Marcos R. Preconditioned spectral projected gradient method on convex sets[J]. Journal of Computational Mathematics, 2005, 23(3):225-232.[21] Birgin E G, Martinez J M, Raydan M. Nonmonotone spectral projected gradient methods for convex sets[J]. IMA Journal of Numerical Analysis, 2003, 23(23):539-559.[22] Zhang H C, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM Journal on Optimization, 2006, 14(4):1043-1056.[23] Zhou B, Gao L, Dai Y H. Gradient methods with adaptive step-sizes[J]. Computational Optimization & Applications, 2006, 35(1):69-86.[24] Kuhn H W. A note on Fermat's problem[J]. Mathematical Programming, 1973, 4(1):98-107.[25] Jiang J L, Yuan X M. A heuristic algorithm for constrained multi-source Weber problem - The variational inequality approach[J]. European Journal of Operational Research, 2008, 187(2):357-370. |