删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非线性耦合Schrödinger-KdV方程组的一个局部能量守恒格式

本站小编 Free考研考试/2021-12-27

郭峰
华侨大学数学科学学院, 泉州 362021
收稿日期:2017-08-30出版日期:2018-09-15发布日期:2018-08-08




A LOCAL ENERGY CONSERVATIVE SCHEME FOR NONLINEAR COUPLED SCHRÖDINGER-KDV EQUATIONS

Guo Feng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
Received:2017-08-30Online:2018-09-15Published:2018-08-08







摘要



编辑推荐
-->


本文利用平均值离散梯度给出了一个构造哈密尔顿偏微分方程的局部能量守恒格式的系统方法.并用非线性耦合Schrödinger-KdV方程组加以说明.证明了格式满足离散的局部能量守恒律,在周期边界条件下,格式也保持离散整体能量及系统的其它两个不变量.最后数值实验验证了理论结果的正确性.
MR(2010)主题分类:
65M06
65P10

分享此文:


()

[1] Appert K,Vaclavik J.Dynamics of coupled solitons[J].Physics of Fluids,1977,11(20):1845-1849.

[2] Zhu P F,Kong L H,Wang L.The conservation laws of Schrödinger-KdV equations[J].J Jiangxi Normal Univ,2012,36(5):495-498.

[3] Abdou M A,Soliman A A.New applications of variational iteration method[J].Physica D-Nonlinear Phenomena,2005,211(1-2):1-8.

[4] Golbabai A,Safdari-Vaighani A.A meshless method for numerical solution of the coupled Schrödinger-KdV equations[J].Computing,2011,92(3):225-242.

[5] 王兰,段雅丽,孔令华.长短波方程多辛数值模拟(英文)[J].中国科学技术大学学报,2015,45(9):721-726.

[6] Liu Y Q,Cheng R J,Ge H X.An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations[J].Chinese Physics B,2013,22(10):100204.

[7] Bai D M,Zhang L M.The finite element method for the coupled Schrödinger-KdV equations[J].Physics Letters A,2009,373(26):2237-2244.

[8] Zhang H,Song S H,Chen X D,Zhou W E.Average vector field methods for the coupled Schrödinger-KdV equations[J].Chinese Physics B,2014,23(7):070208.

[9] Feng K,Qin M Z.The symplectic methods for the computation of hamiltonian equations,Lecture Notes in Mathematics[M].Berlin,Heidelberg:Springer,1987:1-37.

[10] Feng K,Qin M Z.Symplectic Geometric Algorithms for Hamiltonian Systems[M].Heidelberg:Springer and Zhejiang Science and Technology Publishing House,2010.

[11] Bridges T J.Multi-symplectic structures and wave propagation[J].Mathematical Proceedings of the Cambridge Philosophical Society,1997,121(1):147-190.

[12] Shang Z J.KAM theorem of symplectic algorithms for Hamiltonian systems[J].Numerische Mathematik,1999,83(3):477-496.

[13] Reich S.Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Journal of Computational Physics,2000,157(2):473-499.

[14] Hairer E,Lubich C,Wanner G.Geometric Numerical Integration:Structure Preserving Algorithms for Ordinary Differential Equations[M].Berlin:Springer-Verlag,2002.

[15] Hong J L,Li C.Multi-symplectic Runge-Kutta methods for nonlinear dirac equations[J].Journal of Computational Physics,2006,211(2):448-472.

[16] Liu H Y,Zhang K.Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations[J].Ima Journal of Numerical Analysis,2006,26(2):252-271.

[17] Hong J L,Liu H Y,Sun G.The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDES[J].Mathematics of Computation,2006,75(253):167-181.

[18] Kong L H,Hong J L,Zhang J J.Splitting multisymplectic integrators for Maxwell's equations[J].Journal of Computational Physics,2010,229(11):4259-4278.

[19] Sun Y,Tse P S P.Symplectic and multisymplectic numerical methods for Maxwell's equations[J].Journal of Computational Physics,2011,230(5):2076-2094.

[20] Wang Y S,Hong J L.Multi-symplectic algorithms for Hamiltonian partial differential equations[J].Commun.Appl.Math.Comput.,2013,27(2):163-230.

[21] Marsden J E,Patrick G W,Shkoller S.Multisymplectic geometry,variational integrators,and nonlinear PDEs[J].Communications in Mathematical Physics,1998,199(2):351-395.

[22] Bridges T J,Reich S.Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Physics Letters A,2001,284(4-5):184-193.

[23] Wang Y S,Wang B,Ji Z Z.Structure Preserving Algorithms for Soliton Equations[J].Chinese Journal of Computational Physics,2004,21(5):386-400.

[24] Wang Y S,Wang B,Qin M Z.Local structure-preserving algorithms for partial differential equations[J].Science in China Series a-Mathematics,2008,51(11):2115-2136.

[25] 董洪泗.两类非线性Schrödinger方程的局部保结构算法[D].南京师范大学,2009.

[26] 孙丽平.局部保结构算法的复合构造[D].南京师范大学,2010.

[27] Harten A,Lax P D,Van Leer B.On upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[J].SIAM Rev., 1983,25(1):35-61.

[28] Itoh T,Abe K.Hamiltonian-conserving discrete canonical equations based on variational difference quotients[J].J.Comput.Phys.,1988,76(1):85-102.

[29] 张善卿,李志斌.非线性耦合Schrödinger-KdV方程组新的精确解析解[J].物理学报,2002,51(10):2197-2201.

[30] 王廷春.某些非线性孤立波方程(组)的数值算法研究[D].南京航空航天大学,2008.

[1]张燕美, 兰斌, 盛志强, 袁光伟. 非定常对流扩散方程保正格式解的存在性[J]. 计算数学, 2019, 41(4): 381-394.
[2]贾东旭, 盛志强, 袁光伟. 扩散方程一种无条件稳定的保正并行有限差分方法[J]. 计算数学, 2019, 41(3): 242-258.
[3]盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[4]崔霞, 岳晶岩. 守恒型扩散方程非线性离散格式的性质分析和快速求解[J]. 计算数学, 2015, 37(3): 227-246.
[5]岳晶岩, 袁光伟, 盛志强. 多边形网格上扩散方程新的单调格式[J]. 计算数学, 2015, 37(3): 316-336.
[6]耿晓月, 刘小华. 广义sine-Gordon方程高精度隐式紧致差分方法[J]. 计算数学, 2015, 37(2): 199-212.
[7]甘小艇, 殷俊锋. 二次有限体积法定价美式期权[J]. 计算数学, 2015, 37(1): 67-82.
[8]林超英, 黄浪扬, 赵越, 朱贝贝. 带三次项的非线性四阶Schrödinger方程的一个局部能量守恒格式[J]. 计算数学, 2015, 37(1): 103-112.
[9]郑宁, 殷俊锋. 基于不光滑边界的变系数抛物型方程的高精度紧格式[J]. 计算数学, 2013, 35(3): 275-285.
[10]武从海, 赵宁. 基于新光滑因子的WENO5格式[J]. 计算数学, 2011, 33(3): 257-268.
[11]吴宏伟. 关于广义KPP方程的数值解[J]. 计算数学, 2009, 31(2): 137-150.
[12]万正苏, 陈光南. 带非局部边界条件的非线性抛物方程的隐式差分解法[J]. 计算数学, 2008, 30(4): 417-424.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=235
相关话题/数学 计算 结构 南京师范大学 系统