[1] Bai Z Z, Li G Q. Restrictively preconditioned conjugate gradient methods for systems of linear equations[J]. IMA J. Numer. Anal., 2003, 23(4):561-580.[2] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3):603-626.[3] Bai Z Z, Parlett B N, Wang Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer. Math. 2005, 102(1):1-38.[4] Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428(11):2900-2932.[5] Benzi M, Guo X P. A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations[J]. Appl. Numer. Math., 2011, 61(1):66-76.[6] Benzi M, Ng M K, Niu Q. A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations[J]. J. Comput. Phys., 2011, 230(16):6185-6202.[7] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14(1):1-137.[8] Bramble J H, Pascisk J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problems[J]. SIAM J. Numer. Anal., 1997, 34(3):1072-1092.[9] Cao Y, Yao L Q and Jiang M Q. A relaxed HSS preconditioner for saddle point problems from meshfree discretization[J]. J. Comput. Math., 2013, 31:398-421.[10] Cao Y, Miao S X, Cui Y S. A relaxed splitting preconditioner for generalized saddle point problems[J]. Comput. Appl. Math., 2014:1-15.[11] Cao Y, Du J, Niu Q. Shift-splitting preconditioners for saddle point problems[J]. J. Comput. Appl. Math., 2014, 272:239-250.[12] Cao Y, Yao L Q, Jiang M Q. A modified dimensional split preconditioner for generalized saddle point problems[J]. J. Comput. Appl. Math., 2013, 250:70-82.[13] Chen F, Jiang Y L. A generalization of the inexact parameterized Uzawa methods for saddle point problems[J]. Appl. Math. Comput., 2008, 206:765-771.[14] Chen C R, Ma C F. A generalized shift-splitting preconditioner for saddle point problems[J]. Appl. Math. Letters, 2015, 43:49-55.[15] Elman H C, Ramage A, Silvester D J. Algorithm 866:IFISS, a Matlab toolbox for modelling incompressible flow[J]. ACM Tran. Math. Soft., 2007, 33(2):14.[16] Hinze M, Pinnau R, Ulbrich M, Ulbrich S. Optimization with PDE Constraints[M]. Springer, New York, 2009.[17] Horn R A, Johnson C R. Matrix Analysis, Second edition[M]. Cambridge University Press, Cambridge, 2012.[18] Kellogg R B. Another alternating-direction-implicit method[J]. J. Korean Soc. Ind. Appl. Math., 1963, 11:976-979.[19] Kollmann M, Zulehner W. A robust preconditioner for distributed optimal control for Stokes flow with control constraints[J]. Springer Berlin Heidelberg, 2013:771-779.[20] Pearson J W. On the role of commutator arguments in the development of parameter-robust preconditioners for Stokes control problems[J]. Technical Report., 2013.[21] Rees T, Wathen A J. Preconditioning iterative methods for the optimal control of the Stokes equations[J]. SIAM J. Sci. Comput., 2011, 33(5):2903-2926.[22] Nocedal J, Wright S. Numerical Optimization[M]. Springer, New York, 1999[23] Pan J Y, Ng M K, Bai Z Z. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172(2):762-771.[24] Saad Y, Schultz M H. GMRES:a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Statist. Sci. Comput. 1986, 7(3):856-869.[25] Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn)[M]. SIAM, Philadelphia, PA, 2003.[26] Simoncini V, Benzi M. Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(2):377-389.[27] Stoll M, Wathen A. All-at-once solution of time-dependent Stokes control[J]. J. Comput. Phys., 2013, 232(1):498-515.[28] Tan N B, Huang T Z, Hu Z J. A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations[J]. J. Appl. Math., 2012, 2012:1-12.[29] Zhang J L, Gu C Q, Zhang K. A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems[J]. Appl. Math. Comput., 2014, 249:468-479. |