删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Helmholtz方程有限差分方法概述

本站小编 Free考研考试/2021-12-27

王坤1, 张扬1, 郭瑞2
1. 重庆大学数学与统计学院, 重庆 401331;
2. 石河子大学理学院数学系, 石河子 832003
收稿日期:2017-08-26出版日期:2018-06-15发布日期:2018-05-15


基金资助:中央高校基本科研业务费(资助号:106112017CDJXY100006)和重庆市基础科学与前沿技术研究专项(项目立项编号:cstc2017jcyjAX0231)资助;石河子大学自主资助支持校级项目ZZZC201611(2017-2018)和石河子大学高层次人才科研启动项目RCSX201733(2017-2020)资助.


FINITE DIFFERENCE METHODS FOR THE HELMHOLTZ EQUATION: A BRIEF REVIEW

Wang Kun1, Zhang Yang1, Guo Rui2
1. College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China;
2. Department of Mathematics, Faculty of Sciences, Shihezi University, Shihezi 832003, China
Received:2017-08-26Online:2018-06-15Published:2018-05-15







摘要



编辑推荐
-->


文章对最近二十年来Helmholtz方程有限差分方法方面的发展进行了概述.以相位误差为基础,文章分别对一维、二维、三维空间中该方面的研究结果进行了陈述,阐述了各种方法之间的差别与联系,特别展现了在高波数情况下不同差分格式对Helmholtz方程的计算效果,并且对高波数Helmholtz方程有限差分方法研究中现在存在的一些主要困难进行了讨论.
MR(2010)主题分类:
65N06
65N15
65N22

分享此文:


()

[1] Ihlenburg F. Finite Element Analysis of Acoustic Scattering[M]. Spring, NewYork, 1998.

[2] Bao G, Sun W. A fast algorithm for the electromaginetic scattering from a large cavity[J]. SIAM J. Sci. Comput., 2005, 27:553-574.

[3] Bao G, Yun K, Zhou Z. Stability of the scattering from a large electromagnetic cavity in two dimensions[J]. SIAM J. Math. Anal., 2012, 44:383-404.

[4] Chen Z, Liu X. An adaptive perfectly matched layer technique for time-harmonic scattering problems[J]. SIAM J. Numer. Anal., 2005, 43(2):645-671.

[5] Chen Z, Liang C, Xiang X. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number[J]. Inverse Probl. Imag., 2013, 7:663-678.

[6] Ma J, Zhu J, Li M. The Galerkin boundary element method for exterior problems of 2-D Helmholtz equation with arbitrary wavenumber[J]. Engrg. Anal. Bound. Elem., 2010, 34:1058-1063.

[7] Hsiao G, Liu F, Sun J, Xu L. A coupled BEM and FEM for the interior transmission problem in acoustics[J]. J. Comput. Appl. Math., 2011, 235(17):5213-5221.

[8] Hsiao G, Xu L. A system of boundary integral equations for the transmission problem in acoustics[J]. Appl. Numer. Math., 2011, 61(9):1017-1029.

[9] Wang Y, Ma F, Zheng E. Galerkin method for the scattering problem of a slit[J]. J. Sci. Comput., 2017, 70(1):192-209.

[10] Wu H, Liu Y, Jiang W. Analytical integration of the moments in the diagonal form fast multipole boundary element method for 3-D acoustic wave problems[J]. Eng. Anal. Bound. Elem., 2012, 63(2):248-254.

[11] Geng H, Yin T, Xu L. A priori error estimates of the DtN-FEM for the transmission problem in acoustics[J]. J. Comput. Appl. Math., 2017, 313:1-17.

[12] Sun W, Ma F. An error estimate of the coupled finite-infinite element method for scattering from an arc[J]. Int. J. Numer. Anal. Model., 2014, 11(4):841-853.

[13] Shen J, Wang L. Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains[J]. SIAM J. Numer. Anal., 2007, 45:1954-1978.

[14] Shen J, Wang L. Spectral approximation of the Helmholtz equation with high wave numbers[J]. SIAM J. Numer. Anal., 2005, 43:623-644.

[15] Baruch G, Fibich G, Tsynkov S, Turkel E. Fourth order schemes for time-harmonic wave equations with discontinuous coefficients[J]. Commun. Comput. Phys., 2009, 5(2-4):442-455.

[16] Britt S, Tsynkov S, Turkel E. A compact fourth order scheme for the Helmholtz equation in polar coordinates[J]. J. Sci. Comput., 2010, 54:26-47.

[17] Britt S, Tsynkov S, Turkel E. Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes[J]. Commun. Comput. Phys., 2011, 9(3):520-541.

[18] Chen Z, Wu T, Yang H. An optimal 25-point finite difference scheme for the Helmholtz equation with PML[J]. J. Comput. Appl. Math., 2011, 236(6):1240-1258.

[19] Chen Z, Cheng D, Wu T. A dispersion minimizing finite difference scheme and preconditioned solver for the 3D Helmholtz equation[J]. J. Comput. Phys., 2012, 231(24):8152-8175.

[20] Chen Z, Cheng D, Feng W, Wu T. An optimal 9-point finite difference scheme for the Helmholtz equation with PML[J]. Int. J. Numer. Anal. Model., 2013, 10:389-410.

[21] Cheng D, Liu Z, Wu T. A multigrid-based preconditioned solver for the Helmholtz equation with a discretization by 25-point difference scheme[J]. Math. Comput. Simul., 2015, 117:54-67.

[22] Cheng D, Tan X, Zeng T. A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting[J]. Comput. Math. Appl., 2017, 73(11):2345-2359.

[23] Fernandes D. A. Loula, Quasi optimal finite difference method for Helmholtz problem on unstructured grids[J]. Int. J. Numer. Meth. Engng., 2010, 82:1244-1281.

[24] Feng X, Li Z, Qiao Z. High order compact finite difference schemes for the Helmholtz equation with discontinuous coefficients[J]. J. Comput. Math., 2011, 29:324-340.

[25] Feng X. A high-order compact scheme for the one-dimensional Helmholtz equation with a discontinuous coefficient[J]. Int. J. Comput. Math., 2012, 89(5):618-624.

[26] Fu Y. Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers[J]. J. Comput. Math., 2008, 26:98-111.

[27] Guo R, Wang K, Xu L. Efficient finite difference methods for acoustic scattering from circular cylindrical obstacle[J]. Int. J. Numer. Anal. Model., 2016, 13:986-1002.

[28] Harari I, Turkel E. Accurate finite difference methods for time-harmonic wave propagation[J]. J. Comput. Phys., 1995, 119:252-270.

[29] Jo C, Shin C, Suh J. An optimal 9-point, finite-difference, frequency-space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61:529-537.

[30] Lambe L, Luczak R, Nehrbass J. A new finite difference method for the Helmholtz equation using symbolic computation[J]. Int. J. Comput. Engrg. Sci., 2003, 4:121-144.

[31] 刘佳勇. 二维大波数Helmholtz方程的九点差分格式[D]. 重庆大学, 2015.

[32] Nabavia M, Siddiqui M, Dargahi J. A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation[J]. J. Sound Vibrat., 2007, 307:972-982.

[33] Operto S, Virieux J, Amestoy P, L'Excellent J, Giraud L, Ali H. 3D finite-difference frequencydomain modeling of visco-acoustic wave propagation using a massively parallel direct solver:A feasibility study[J]. Geophysics, 2007, 72:SM195-SM211.

[34] Shin C, Sohn H. A frequency-space 2-D scalar wave extrapolator using extended 25-point finitedifference operator[J]. Geophysics, 1998, 63:289-296.

[35] Singer I, Turkel E. Sixth-order accurate finite difference schemes for the Helmholtz equation[J]. J. Comput. Acoust., 2006, 14:339-351.

[36] Singer I, Turkel E. High-order finite difference methods for the Helmholtz equation[J]. Comput. Methods Appl. Mech. Engrg., 1998, 163:343-358.

[37] Sutmann G. Compact finite difference schemes of sixth order for the Helmholtz equation[J]. J. Comput. Appl. Math., 2007, 203:15-31.

[38] Su X, Feng X, Li Z. Fourth-order compact schemes for Helmholtz equations with piecewise wave numbers in the polar coordinates[J]. J. Comput. Math., 2016, 34(5):499-510.

[39] Stephane O, Jean V, Patrick A, Jean-Yves E, Giraud G, Hafedh B. 3D finite-difference frequencydomain modeling of visco-acoustic wave propagation using a massively parallel direct solver:A feasibility study[J]. Geophysics, 2007, 72:SM195-SM211.

[40] Turkel E, Gordon D, Gordon R, Tsynkov S. Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number[J]. J. Comput. Phys., 2013, 232:272-287.

[41] Wang K, Wong Y S. Pollution-free finite difference schemes for non-homogeneous Helmholtz equation[J]. Int. J. Numer. Anal. Model., 2014, 11:787-815.

[42] Wang K, Wong Y S, Deng J. Efficient and accurate numerical solutions for Helmholtz equation in polar and spherical coordinates[J]. Commun. Comput. Phys., 2015, 17:779-807.

[43] Wang K, Wong Y S. Is pollution effect of finite difference schemes avoidable for multi-dimensional Helmholtz equations with high wave numbers?[J]. Commun. Comput. Phys., 2017, 21:490-514.

[44] Wang K, Wong Y, Huang J. Solving Helmholtz equation at high wave numbers in exterior domains[J]. Appl. Math. Comput., 2017, 298:221-235.

[45] Wang K, Wong Y S, Huang J. Analysis of pollution-free approaches for multi-dimensional Helmholtz equations[J]. submitted.

[46] Wong Y S, Li G. Exact finite difference schemes for solving Helmholtz equation at any wavenumber[J]. Int. J. Numer. Anal. Model. Ser., B 2011, 2:91-108.

[47] Wu T, Chen Z. A dispersion minimizing subgridding finite difference scheme for the Helmholtz equation with PML[J]. J. Comput. Appl. Math., 2014, 267:82-95.

[48] Wu T, Chen Z, Chen J. Optimal 25-point finite-difference subgridding techniques for the 2D Helmholtz equation[J]. Math. Probl. Eng., 2016, Art. ID 1719846, 16 pp.

[49] Wu T. A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation[J]. J. Comput. Appl. Math., 2017, 311:497-512.

[50] Zhang W, Dai Y. Finite-difference solution of the Helmholtz equation based on two domain decomposition algorithms[J]. J. Appl. Math. Phys., 2013, 1:18-24.

[51] Babuaska I, Sauter S. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers[J]. SIAM J. Numer. Anal., 1997, 34(6):2392-2423.

[52] Burman E, Wu H, Zhu L. Linear continuous interior penalty finite element method for Helmholtz equation with high wave number:one-dimensional analysis[J]. Numer Methods Partial Differential Eq., 2016, 32:1378-1410.

[53] Chen H, Lu P, Xu X. A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number[J]. SIAM J. Numer. Anal., 2013, 51(4):2166-2188.

[54] Chen H, Lu P, Xu X. A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation[J]. J. Comput. Phys., 2014, 264:133-151.

[55] Du Y, Wu H. Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number[J]. SIAM J. Numer. Anal., 2015, 53(2):782-804.

[56] Feng X, Wu H. hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number[J]. Math. Comp., 2011, 80(276):1997-2024.

[57] Chen W, Liu Y, Xu X. A robust domain decomposition method for the Helmholtz equation with high wave number[J]. ESAIM Math. Model. Numer. Anal., 2016, 50(3):921-944.

[58] Harari I, Hughes T J R. Finite element method for the Helmholtz equation in an exterior domain:model problems[J]. Comp. Methods Appl. Mech. Eng., 1991, 87:59-96.

[59] Wu H. Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I:linear version[J]. IMA J. Numer. Anal., 2014, 34(3):1266-1288.

[60] Zhu L, Wu H. Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part Ⅱ:hp version[J]. SIAM J. Numer. Anal., 2013, 51(3):1828-1852.

[61] Zheng E, Ma F, Wang Y. A least-squares FEM for the direct and inverse rectangular cavity scattering problem[J], Math. Probl. Eng., 2015, Art. ID 524345, 10 pp.

[62] Han H, Huang Z. A tailored finite point method for the Helmholtz equation with high wave numbers in heterogenous medium[J]. J. Comput. Math., 2008, 26(5):728-739.

[63] Huang Z, Yang X. Tailored finite cell method for solving Helmholtz equation in layered Heterogeneous medium[J]. J. Comput. Math., 2012, 30:381-391.

[64] Hu Q, Yuan L. A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations[J]. Int. J. Numer. Anal. Model., 2014, 11(3):587-607.

[65] Li S, Xiang S. Convergence analysis of a coupled method for Helmholtz equation[J]. Complex Var. Elliptic Equ., 2014, 59(4):484-503.

[66] Zheng C. Gaussian beam approach for the boundary value problem of high frequency Helmholtz equation[J]. Commun. Math. Sci., 2010, 8:1041-1066.

[67] Zheng C. Global geometrical optics approximation to the high frequency Helmholtz equation with discontinuous media[J]. Commun. Math. Sci., 2015, 13:1949-1974.

[68] Chen Z, Cheng D, Feng W, Wu T, Yang H. A multigrid-based preconditioned Krylov subspace method for the Helmholtz equation with PML[J]. J. Math. Anal. Appl., 2011, 383(2):522-540.

[69] Chen H, Wu H, Xu X. Multilevel preconditioner with stable coarse grid corrections for the Helmholtz equation[J]. SIAM J. Sci. Comput., 2015, 37(1):A221-A244.

[70] Ito K, Qiao Z, Toivanen J. A domain decomposition solver for acoustic scattering by elastic objects in layered media[J]. J. Comput. Phys., 2008, 227(19):8685-8698.

[71] Yuan L, Hu Q, An H. Parallel preconditioners for plane wave Helmholtz and Maxwell systems with large wave numbers[J]. Int. J. Numer. Anal. Model., 2016, 13(5):802-819.

[72] Engquist B, Ying L. Sweeping preconditioner for the Helmholtz equation:Hierarchical matrix representation[J]. Commun. Pure Appl. Math., 2011, LXIV:697-735.

[73] 冷伟. 求解Helmholtz方程的快速算法[J]. 工程数学学报, 2015, 5:726-742.

[74] Hu Q, Zhang H. Substructuring preconditioners for the systems arising from plane wave discretization of Helmholtz equations[J]. SIAM J. Sci. Comput., 2016, 38(4):A2232-A2261.

[75] Yuan L, Hu Q. A solver for Helmholtz system generated by the discretization of wave shape functions[J]. Adv. Appl. Math. Mech., 2013, 5(6):791-808.

[76] Li S, Xiang S, Xian J. A fast hybrid Galerkin method for high-frequency acoustic scattering[J]. Appl. Anal., 2017, 96(10):1698-1712.

[77] Zhao M, Qiao Z, Tang T. A fast high order method for electromagnetic scattering by large open cavities[J]. J. Comput. Math., 2011, 29(3):287-304.

[1]付姚姚, 曹礼群. 矩阵形式二次修正Maxwell-Dirac系统的多尺度算法[J]. 计算数学, 2019, 41(4): 419-439.
[2]武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[3]卢培培, 许学军. 高波数波动问题的多水平方法[J]. 计算数学, 2018, 40(2): 119-134.
[4]骆其伦, 黎稳. 二维Helmholtz方程的联合紧致差分离散方程组的预处理方法[J]. 计算数学, 2017, 39(4): 407-420.
[5]郑权, 高玥, 秦凤. Helmholtz方程外边值问题的基于修正的DtN边界条件的有限元方法[J]. 计算数学, 2016, 38(2): 200-211.
[6]孟文辉, 王连堂. Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析[J]. 计算数学, 2015, 37(2): 123-136.
[7]陈璐, 王雨顺. 保结构算法的相位误差分析及其修正[J]. 计算数学, 2014, 36(3): 271-290.
[8]张敏,杜其奎,. 椭圆外区域上Helmholtz问题的自然边界元法[J]. 计算数学, 2008, 30(1): 75-88.
[9]杨超,孙家昶. 一类六边形网格上拉普拉斯4点差分格式及其预条件子[J]. 计算数学, 2005, 27(4): 437-448.
[10]贾祖朋,邬吉明,余德浩. 三维Helmholtz方程外问题的自然边界元与有限元耦合法[J]. 计算数学, 2001, 23(3): 357-368.
[11]汤华中,邬华谟. 离散速度动力学方程组的数值方法研究 Ⅰ.半隐式差分格式[J]. 计算数学, 2000, 22(2): 183-190.
[12]余德浩,贾祖朋. 二维Helmholtz方程外问题基于自然边界归化的非重叠型区域分解算法[J]. 计算数学, 2000, 22(2): 227-240.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=288
相关话题/数学 计算 石河子大学 自然 重庆大学