\r高春艳,赵文辉,张明路,孟宪春\r
\r
AuthorsHTML:\r高春艳,赵文辉,张明路,孟宪春\r
\r
AuthorsListE:\rGao Chunyan,Zhao Wenhui,Zhang Minglu,Meng Xianchun\r
\r
AuthorsHTMLE:\rGao Chunyan,Zhao Wenhui,Zhang Minglu,Meng Xianchun\r
\r
Unit:\r河北工业大学机械工程学院,天津 300130\r
\r
Unit_EngLish:\rSchool of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China\r
\r
Abstract_Chinese:\r\r在公共安防领域,汽车底部潜藏的危险品危害性强,检测难度大.当前车底危险品检测主要通过模板匹配等传统目标检测技术进行检测,但存在检测速度慢、检测精度低的问题,为了能够更好地检测出藏匿于车底部位的危险品目标,提出一种改进的\rYOLOv3\r目标检测算法.该方法分别从多尺度图像训练、增加\rInception\r-\rres\r模块和省去大尺度特征输出分支\r3\r个方面对\rYOLOv3\r网络进行改进.实验证明:在自制危险品数据集下,采用双数据集多尺度图像训练,网络的\rmAP\r值大约提高了\r0.9\r%\r,单张图像检测耗时大致不变;在\r3\r个支路分别增加相应\rInception\r-\rres\r结构,网络的\rmAP\r值大约提高了\r1.5\r%\r,但是单张图像检测耗时却增加了原来的\r2.6\r倍;省去大尺度特征输出分支,网络的\rmAP\r值降低了\r0.3\r%\r,但是单张图像检测耗时也相应降低\r25.4\r%\r.通过结合上述方法对\rYOLOv3\r算法模型进行综合改进,选取双数据集多尺度图像训练的方式,同时省去大尺度特征输出分支,并在其他两支路增加相应\rInception\r-\rres\r结构.这样在充分结合\rInception\r-\rres\r结构优势的情况下,省去对检测耗时影响较大且对检测结果\rmAP\r值影响较小的大尺度特征输出分支.实验测得改进网络\rmAP\r值大约提高\r2.2\r%\r左右,而单张图像检测耗时增加了\r0.014s\r,在可接受范围内.且网络对于小尺寸目标识别效果明显增强,很好地满足了车底复杂背景危险品检测要求\r.\r\r
\r
Abstract_English:\r\rIn the field of public security\r,\rdangerous objects hidden at the bottom of a vehicle are highly harmful and difficult to detect. In the field of vehicle bottom dangerous object detection\r,\rtraditional object detection technology\r,\rsuch as template matching\r,\ris mainly used\r.\rHowever\r,\rthe detection speed is slow and the detection accuracy is low. To better detect dangerous objects hidden at the bottom of a vehicle\r,\ran improved YOLOv3 detection algorithm is proposed. The method improves three aspects of the YOLOv3 network\r,\ri.e.\r,\rmulti-scale image training\r,\radding the Inception-res module\r,\rand eliminating the large-scale feature output branch. The experiment proves that\r,\runder the self-made dangerous object dataset\r,\rusing the double-dataset multi-scale image training\r,\rthe mAP value of the network increases by approximately 0.9\r%\r,\rbut the detection time of a single image remains roughly the same. When adding the corresponding Inception-res structure to the three branches\r,\rthe network’s mAP value increases by approximately 1.5\r%\r,\rbut the detection time of a single image increases by 2.6 times. When eliminating the large-scale feature output branch\r,\rthe network’s mAP value decreases by 0.3\r%\r,\rbut the detection time of a single image decreases by 25.4\r%\r. By combining the three aspects\r,\ri.e.\r,\radopting the double-dataset multi-scale image training method\r,\reliminating the large-scale feature output branch\r,\rand adding the corresponding Inception-res structure to the two other branches\r,\rthe YOLOv3 algorithm model is comprehensively improved. In this manner\r,\rin combination with the advantages of the Inception-res structure\r,\rthe large-scale feature output branch that has a considerable effect on the detection time and has only a slight influence on the mAP value of the detection result is omitted. The experimental results show that the mAP value of the improved network increases by approximately 2.2\r%\r. Meanwhile\r,\rthe detection time of a single image increases by 0.014s\r,\rwhich is within the acceptable range. Moreover\r,\rthe network has significantly enhanced the recognition effect on small-sized objects\r,\rwhich satisfies the requirements for the detection of dangerous objects in the complex background of a vehicle.\r\r
\r
Keyword_Chinese:深度学习;卷积神经网络;YOLOv3 算法;危险品检测\r
Keywords_English:deep learning;convolutional neural network;YOLOv3 algorithm;dangerous object detection\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6435
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
一种基于YOLOv3 的汽车底部危险目标检测算法\r\n\t\t
本站小编 Free考研考试/2022-01-16
相关话题/汽车 算法
基于改进的贝叶斯分类算法的断路器故障诊断\r\n\t\t
李永丽,吴玲玲,卢扬,孙广宇AuthorsHTML:李永丽,吴玲玲,卢扬,孙广宇AuthorsListE:LiYongli,WuLingling,LuYang,SunGuangyuAuthorsHTMLE:LiYongli,WuLingling,LuYang, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16液相色谱-三重四极杆质谱定量分析算法\t\t
汪日燕1,刘海培1,孙传强1,韩文念2,贾明正2,蒋学慧1AuthorsHTML:汪日燕1,刘海培1,孙传强1,韩文念2,贾明正2,蒋学慧1AuthorsListE:WangYan1,LiuHaipei1,SunChuanqiang1,HanWennian2,JiaMingzheng2, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16嵌入DenseNet 结构和空洞卷积模块的改进YOLO v3 火灾检测算法
张为,魏晶晶AuthorsHTML:张为,魏晶晶AuthorsListE:ZhangWei,WeiJingjingAuthorsHTMLE:ZhangWei,WeiJingjingUnit:天津大学微电子学院,天津300072Unit_EngLish:SchoolofMicroelectronics ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于多尺度特征融合与反复注意力机制的细粒度图像分类算法
何凯,冯旭,高圣楠,马希涛AuthorsHTML:何凯,冯旭,高圣楠,马希涛AuthorsListE:HeKai,FengXu,GaoShengnan,MaXitaoAuthorsHTMLE:HeKai,FengXu,GaoShengnan,MaXitaoUnit:天津大学电气自动化与信息工程学院, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于改进随机抽样一致算法的视觉SLAM
徐岩,安卫凤AuthorsHTML:徐岩,安卫凤AuthorsListE:XuYan,AnWeifengAuthorsHTMLE:XuYan,AnWeifengUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish:SchoolofElectricalandInform ...天津大学科研学术 本站小编 Free考研考试 2022-01-16单载波 GMSK信号的高精度频偏估计算法
高静1,2,桑田1,2,罗韬3AuthorsHTML:高静1,2,桑田1,2,罗韬3AuthorsListE:GaoJing1,2,SangTian1,2,LuoTao3AuthorsHTMLE:GaoJing1,2,SangTian1,2,LuoTao3Unit:1.天津大学微电子学院,天津300 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于改进水平集的菌落图像智能计数算法\t\t
张力新,张黎明,杜培培,余辉AuthorsHTML:张力新,张黎明,杜培培,余辉AuthorsListE:ZhangLixin,ZhangLiming,DuPeipei,YuHuiAuthorsHTMLE:ZhangLixin,ZhangLiming,DuPe ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于RNA 遗传操作的改进蝙蝠算法\r\n\t\t
耿艳香1,2,张立毅1,2,孙云山2,费腾2,蒋师贤2,马嘉骏2AuthorsHTML:耿艳香1,2,张立毅1,2,孙云山2,费腾2,蒋师贤2,马嘉骏2AuthorsListE:GengYanxiang1,2,ZhangLiyi1,2,SunYunshan2,Fe ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于人工蜂群的新型圆形交通标志识别算法\r\n\t\t
董娜,刘欣宇,吴爱国AuthorsHTML:董娜,刘欣宇,吴爱国AuthorsListE:DongNa,LiuXinyu,WuAiguoAuthorsHTMLE:DongNa,LiuXinyu,WuAiguoUnit:天津大学电气自动化与信息工程学 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种基于多阶段遗传算法的功率模块自动化布局方法\r\n\t\t
郝柏森1,2,梅云辉1,2,李欣1,2,陆国权1,2AuthorsHTML:郝柏森1,2,梅云辉1,2,李欣1,2,陆国权1,2AuthorsListE:HaoBaisen1,2,MeiYunhui1,2,LiXin1,2,LuGuoquan1,2Au ...天津大学科研学术 本站小编 Free考研考试 2022-01-16