\r张力新,张黎明,杜培培,余辉\r
\r
AuthorsHTML:\r张力新,张黎明,杜培培,余辉\r
\r
AuthorsListE:\rZhang Lixin,Zhang Liming,Du Peipei,Yu Hui\r
\r
AuthorsHTMLE:\rZhang Lixin,Zhang Liming,Du Peipei,Yu Hui\r
\r
Unit:\r天津大学生物医学检测技术与仪器重点实验室,天津 300072\r
\r
Unit_EngLish:\rKey Laboratory of Biomedical Testing Technology and Instruments,Tianjin University,Tianjin 300072,China\r
\r
Abstract_Chinese:\r针对现有的菌落自动识别计数方法对背景敏感、对多菌种菌落分割普适性差的缺点,提出一种基于改进水平集的全自动菌落分割、计数方法.该方法利用偏置场对背景进行建模以消除背景灰度不均影响;构造含有终止条件的多相水平集算法实现菌落目标的自适应分割;通过极坐标空间中凹点检测实现粘连目标计数修正.由天津市食品安全检测技术研究院提供300 例多菌种混杂菌落样本做为测试集,以专家人工鉴定结果为金标准,将本方法与传统形态学方法、迅数icount10 两种定量方法进行对比,菌落密度在300 CFU 内时,本方法计数准确率达到92.7%,对多菌种混杂菌落的计数精度、分割效果都优于其他两种方法.\r
\r
Abstract_English:\rThe current colony counting methods are sensitive to background and are inefficient from the viewpoint of the universality of multi-species colony segmentation. To overcome this limitation,an automatic colony segmentation and counting method based on an improved level set is proposed. Here in,the bias field is used to model the background to eliminate the influence of intensity inhomogeneity. A multiphase level set algorithm with termination condition is constructed to realize adaptive segmentation of colony target. Through the concave point detection in polar coordinates,the correction of adhesion targets counting is achieved. The algorithm is tested on 300 samples of multispecies colonies provided by Tianjin Food Safety Inspection Technology Research Institute. The algorithm is compared with two quantitative methods:traditional morphological algorithm and Shineso icount10 algorithm,and the results of expert artificial identification are used as gold standards. When the colony density is under 300 CFU,the counting accuracy rate is up to 92.7%. Both the counting accuracy and segmentation effect of multi-species colonies using the proposed method are superior to those of the other two algorithms.\r
\r
Keyword_Chinese:偏置场;多相水平集;凹点检测;菌落计数\r
Keywords_English:bias field;multiphase level set;concave point detection;colony counting\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6167
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于改进水平集的菌落图像智能计数算法\t\t
本站小编 Free考研考试/2022-01-16
相关话题/智能 图像
基于稀疏字典学习的立体图像质量评价\t\t
李素梅,常永莉,韩旭,胡佳洁AuthorsHTML:李素梅,常永莉,韩旭,胡佳洁AuthorsListE:LiSumei,ChangYongli,HanXu,HuJiajieAuthorsHTMLE:LiSumei,ChangYongli,HanXu,HuJi ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于生成对抗网络的人脸图像翻译\r\n\t\t
吴华明,刘茜瑞,王耀宏AuthorsHTML:吴华明,刘茜瑞,王耀宏AuthorsListE:WuHuaming,LiuQianrui,WangYaohongAuthorsHTMLE:WuHuaming,LiuQianrui,WangYaohongUn ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于空间变换双线性网络的细粒度鱼类图像分类\r\n\t\t
冀中1,赵可心1,张锁平2,李明兵2AuthorsHTML:冀中1,赵可心1,张锁平2,李明兵2AuthorsListE:JiZhong1,ZhaoKexin1,ZhangSuoping2,LiMingbing2AuthorsHTMLE:JiZho ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种用于超声图像序列分割的水平集演化方法\r\n\t\t
张建勋,葛锦涛,代煜,姚晰童AuthorsHTML:张建勋,葛锦涛,代煜,姚晰童AuthorsListE:ZhangJianxun,GeJintao,DaiYu,YaoXitongAuthorsHTMLE:ZhangJianxun,GeJintao,DaiYu ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于功能磁共振成像的立体图像分辨\r\n\t\t
李元1,郑宏娜2,姚力2,3,龙志颖3,侯春萍1AuthorsHTML:李元1,郑宏娜2,姚力2,3,龙志颖3,侯春萍1AuthorsListE:LiYuan1,ZhengHongna2,YaoLi2,3,LongZhiying3,HouChunping1 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16分区域多标准的全参考图像质量评价算法\r\n\t\t
曹清洁1,2,史再峰1,3,张嘉平1,李杭原1,高静1,3,姚素英1AuthorsHTML:曹清洁1,2,史再峰1,3,张嘉平1,李杭原1,高静1,3,姚素英1AuthorsListE:CaoQingjie1,2,ShiZaifeng1,3,ZhangJiapin ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于透射率融合与优化的水下图像复原\r\n\t\t
杨爱萍1,杨炳旺1,曲畅1,王建1,2AuthorsHTML:杨爱萍1,杨炳旺1,曲畅1,王建1,2AuthorsListE:YangAiping1,YangBingwang1,QuChang1,WangJian1,2AuthorsHTMLE:Ya ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于融合图像的无参考立体图像质量评价\r\n\t\t
李素梅1,薛建伟1,秦龙斌1,2AuthorsHTML:李素梅1,薛建伟1,秦龙斌1,2AuthorsListE:LiSumei1,XueJianwei1,QinLongbin1,2AuthorsHTMLE:LiSumei1,XueJianwei1 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16钻孔图像特征分析与结构面区域划分方法
邹先坚1,2,王川婴1,韩增强1,汪进超1,王益腾1AuthorsHTML:邹先坚1,2,王川婴1,韩增强1,汪进超1,王益腾1AuthorsListE:ZouXianjian1,2,WangChuanying1,HanZengqiang1,WangJinchao1,WangYiteng1Autho ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于改进模糊C均值算法的颈动脉超声图像分割
李锵,张琦珺,关欣,滕建辅AuthorsHTML:李锵,张琦珺,关欣,滕建辅AuthorsListE:LiQiang,ZhangQijun,GuanXin,TengJianfuAuthorsHTMLE:LiQiang,ZhangQijun,GuanXin,TengJianfuUnit:天津大学微电子 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16