课程内容简介 可证明安全是现代密码方案的基本要求。该领域的研究工作起源于C.E.Shannon的完善保密性理论,但该理论依赖于无限的计算能力,使其缺乏实际指导意义。近年来,通过引入计算复杂性、概率算法和随机预言模型(random oracle paradigm),使得可证明安全的研究逐步面向实用,目前已经成为密码方案和协议的理论基础和设计依据。 本课程是密码学与计算机安全学科的博士生专业课,主要介绍现代密码科学的核心理论问题和研究结果,其中包括可证明安全的理论、工具和分析方法以及国内外相关研究的进展情况。要求学生深入理解和掌握:概率算法、单向函数、比特安全性、伪随机性、可证明安全加密、可证明安全数字签名等内容。通过本课程的学习,要求能够从本质上分析和证明现代密码的信息防护能力。 | 课程内容简介(英文) Provable Security is the essential requirement of modern cryptographic schemes. The corresponding research is originated from the C.E. Shannon’s Perfect Security Theory, which was lacking of practical value because of building on infinite computing capacity. In recent years, the appearance of computational complexity, probabilistic algorithm and random oracle paradigm gave the chance to shift from pure research to practical usage in Provable Security field, and it became the foundation of theory and implementation of cryptographic shemes and protocols. This lecture falls into the PHD courses of cryptography and computer security. It gives introductions to core theoretical questions and the conclusions of modern cryptography research. It includes the theory, tool and analytical method of provable security and the latest domestic and aboard progress. The requirement for student is to understand and grasp the contents of probabilistic algorithm, one way function, bits commitment, pseudo-randomness, provably secure encryption, provably secure digital signature, etc. Students should be able to analyse and prove the information protection capacity of modern cryptography basically after this course. | 教学大纲 1. 教学进度 1) 可证明安全的基本概念和方法(8学时) 2) 可证明安全的发展历程及主要结果(4学时) 3) 主要文献的分组讲解与讨论(36学时,全体博士生) 4) 学术沙龙(6学时,全体博士生)2. 课内教学活动 深入理解可证明安全的基本思想和原理,灵活使用可证明安全的方法和工具分析典型的密码方案,培养和锻炼严密的逻辑思维能力和书面表达能力;流利的口头讲解能力和学术辩论能力;强烈的探索创新能力和团队合作能力。3. 课外科技活动 阅读相关书籍和代表性文献,加深对可证明安全理论的理解和认识,扩大知识领域,培育创新的科研能力。 | 课程进度计划 (无) | 课程考核要求 课程学术论文(60%)+分组交流讨论(30%)+考勤(10%)。 | 参 考 文 献 - 1. 1. M. Bellare. Practice-oriented provable security. Lectures on Data Security, LNCS1561, 1-15, Springer-Verlag, 1999.2. 2. D. Boneh, and X. Boyen. Short signatures without random oracles. Advances in Cryptology–Eurocrypto’2004, LNCS3027, 56-73, Springer-Verlag, 2004.3. 3. D. Pointcheval, and J. Stern. Security proofs for signature schemes. Advances in Cryptology-Eurocrypt '96, LNCS1070, 387-398, Springer-Verlag, 1996.4. 4. Y. Watanabe, J. Shikata, and H. Imai. Equivalence between semantic security and indistinguishability against chosen ciphertext attacks. PKC 2003, LNCS 2567, 71–84, Springer-Verlag, 2003.5. 5. M. Bellare, R. Canetti and H. Krawczyk. A modular approach to the design and analysis of authentication and key exchange protocols. Proc. of the 30th Annual Symposium on the Theory of Computing, ACM, 1998.
|
|