摘要/Abstract
Ⅱ型脂肪酸合成途径(FAS-Ⅱ)是细菌和植物体内进行饱和/不饱和脂肪酸合成的唯一必需途径.FAS-Ⅱ由一系列单一基因编码的可溶性酶组成,通过依次循环式的识别和催化由酰基载体蛋白(ACP)共价携带的脂肪酸碳链底物来实现特定长度饱和/不饱和脂肪酸碳链的延长和合成.由于FAS-Ⅱ在细菌生理活动中具有不可或缺的作用,同时与哺乳动物脂肪酸合成途径FAS-I存在显著差异,FAS-Ⅱ的酶系长久以来都被公认为是重要的抗菌药物靶标群.因此,阐明该途径酶系的催化调控机制,发展靶向FAS-Ⅱ酶系的抗菌药物是该领域的研究重点.综述FAS-Ⅱ近年的分子机制研究和药物发现进展有助于进一步了解FAS-Ⅱ的生物学功能并推动全新抗菌药物的发现.
关键词: II型脂肪酸合成途径, 酰基载体蛋白(ACP), 底物识别, 催化调控, 抑制剂发现
Type-Ⅱ fatty acid biosynthesis pathway (FAS-Ⅱ) is the only essential biosynthesis pathway that producing saturated and unsaturated fatty acids for bacteria and plant cell assembly and cellular metabolism. It utilizes a series of individual enzymes encoded by discrete genes to stepwisely catalyze lipid chain growing carried by the substrate carrier protein-acyl carrier protein (ACP). Due to its indispensable biological role in bacteria growth, as well as the distinct biological regulation mechanisms from mammalian fatty acid biosynthesis (FAS-I), the enzymes involved in FAS-Ⅱ have been considered as important anti-pathogenic drug targets for a long time. Hence, investigating the catalysis and dynamic regulation mechanisms of FAS-Ⅱ, developing novel anti-pathogenic drugs against the enzymes involved in FAS-Ⅱ is critical to the field. We here summarize the catalytic mechanism studies and inhibitor discovery work involved in FAS-Ⅱ so far, which may potentially facilitate further understanding of FAS-Ⅱ biological functions as well as antibacterial drug discovery for infectious diseases.
Key words: type-II fatty acid biosynthesis pathway (FAS-II), acyl carrier protein (ACP), substrate recognition, catalysis regulation, inhibitor discovery
PDF全文下载地址:
点我下载PDF