摘要/Abstract
众多胺类及含氟化合物具有重要的生理活性, 在医药领域均具有不可替代的作用. 过渡金属催化的C—H胺化及氟化反应因其高反应效率及原子经济性, 受到了合成化学家的关注, 为生物碱类天然产物及含氟分子的合成提供了便利.N-氟代双苯磺酰胺(NFSI)兼有氟原子及含氮官能团, 可以在过渡金属催化下参与多种类型的有机反应, 实现C—H键的氟化或胺化. 因此, 探索NFSI参与的C—H键直接氟化或胺化反应具有重要意义.综述了近十年NFSI参与的C—H活化构建C—N键和C—F键方法的研究进展, 围绕各类方法的反应机理和应用范围进行阐述, 同时对该领域的局限性和发展前景进行总结和展望.
关键词: N-氟代苯磺酰亚胺, 氟化, 胺化, C—H键活化, 过渡金属催化
The nitrogen- and fluorine-containing molecules display multiple important bioactivities which are crucial compounds in medicinal chemistry. The strategy relies on the transition-metal-catalyzed C—H amination and fluorination has received much attention due to its atom- and step-economy, providing an alternative to the synthesis of many natural alkaloids and fluorides.N-Fluorobenzenesulfonimide (NFSI) consists of the fluoride atom and the nitrogen-containing functionality, it is frequently used in the reactions based on transition-metal-catalyzed C—H activation to construct both C—N and C—F bonds. In this mini-review, the recent research advances in the formation of C—N and C—F bonds through transition-metal-catalyzed C—H with NSFI are reviewed. The reaction scopes and mechanisms are discussed in details, and the limitations of current procedures and the prospects for the future are summarized.
Key words: N-fluorobenzenesulfonimide, fluorination, amination, C—H activation, transition-metal catalysis
PDF全文下载地址:
点我下载PDF