摘要/Abstract
荧光成像技术由于其灵敏度高、操作简单、可实时动态进行细胞、组织以及生物活体成像而受到极大关注,相对于单光子荧光成像技术,双光子成像技术具有高分辨率、强组织穿透性以及低的组织自发荧光干扰等显著的优越性.1,8-萘酰亚胺作为典型的电子供体-π-电子受体(D-π-A)双光子荧光染料,具有光稳定性、大斯托克斯/反斯托克斯位移等优点被广泛应用于酶、活性碳簇、活性氧簇、活性氮簇、生物硫醇、离子等的双光子成像中.依据1,8-萘酰亚胺类荧光探针发光机制,即分子内电荷转移、光诱导电子转移、荧光共振能量转移等发光机制,综述1,8-萘酰亚胺近些年来在双光子成像领域中的应用,并展望了其未来的发展趋势.
关键词: 1,8-萘酰亚胺, 荧光探针, 电子供体-π-电子受体(D-π-A), 荧光发光机制, 双光子成像
Fluorescent imaging technology has received great attention owing to their advantageous features in high sensitivity, relatively simple operations and real-time living cells, tissue and in vivo imaging. Compared with one-photon confocal imaging, two-photon confocal imaging offers considerable advantages such as high resolution, deep-tissue depth, lower tissue auto-fluorescence and so on. As typical D-π-A two-photon dyes, 1,8-naphthalimide dyes have wide application in two-photon imaging for enzyme, reactive carbon species, reactive oxygen species, reactive nitrogen species, biothiols and ions due to their advantages such as high photostability, large Stokes/anti-Stokes shifts. According to the mechanisms of intramolecular charge transfer, photoinduced electron transfer and fluorescence resonance energy transfer, etc., the application in two-photon imaging of 1,8-naphthalimide dyes is summarized and emphasized.
Key words: 1,8-naphthalimide, fluorescent probe, D-π-A, fluorescent mechanism, two-photon imaging
PDF全文下载地址:
点我下载PDF