删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海师范大学数理学院研究生导师介绍-基数+许庆祥

上海师范大学 免费考研网/2013-03-25

上海师范大学数理学院研究生导师介绍

姓名

许庆祥

职称/职务

教授/基础数学硕士点负责人

所在部门

基础数学系

研究方向

算子代数和算子理论

办公室

3号楼230

电话

021 - 64322354

电子邮件

qingxu@online.sh.cn qxxu@shnu.edu.cn

1967年12月出生于浙江嵊州;1985—1989年,就读于浙江师范大学数学系,获学士学位;1989—1995就读于复旦大学数学所,获理学硕士、博士学位。导师为严绍宗教授和陈晓漫教授。1995年到上海师范大学数学系工作至今。1998年晋升为副教授,2002年晋升为教授。研究领域:离散群上的Toeplitz算子,拓扑分次C*-代数,算子和矩阵广义逆。主持过国家自然科学青年基金项目一项(2000—2002),参加过国家自然科学基金面上项目一项(2003—2005),主持过上海市自然科学基金项目一项(2005—2007)以及上海市教委项目多项。

教学情况

主讲过数学分析,实变函数,线性代数,概率论与数理统计等本科课程,以及泛函分析,抽象调和分析,算子代数基础,C*-代数,Hilbert C*-模,算子代数K-理论和非线性泛函分析等研究生课程。

近年来发表的部分论文

SCI/SCIE文章目录:

[1]Q. Xu, Y. Wei and Y. Gu, Sharp norm-estimationsfor Moore Penrose inverses of stable perturbationsof Hilbert C*-module operators, SIAM Journal on Numerical Analysis47 (2010), no.6, 4735—4758 .

[2]Q. Xu, C. Song and Y. Wei, The stable perturbationof the Drazin inverse of the square matrices, SIAM Journal on Matrix Analysis and Applications 31(2010),1507—1520.

[3]Q. Xu and X.Zhang, The generalized inversesof the adjointable operators on the HilbertC*-modules, Journal of The Korean Mathematical Society 47 (2010),no. 2, 363–372.

[4]Q. Xu. Inducedideals and purely infinite simple Toeplitz algebras, Journal of Operator Theory 62 (2009), 33—64.

[5]Q. Xu,Moore-Penrose inverses of partitioned adjointable operators on Hilbert C*-modules,Linear Algebra and Its Applications 430 (2009), 2929–2942.

[6]Q. Xu, Commonhermitian and positive solutions to the adjointable operator equations, Linear Algebra and Its Applications 429 (2008), 1—11.

[7]Q. Xu., L. Shengand Y. Gu, The solutions to some operator equations, Linear Algebra and Its Applications 429 (2008), 1997—2024.

[8]Q. Xu and X. Hu,Particular formulae for the Moore-Penrose inverses of the partitioned boundedlinear operators, Linear Algebra and Its Applications 428 (2008),2941—2946.

[9]Q. Xu and L.Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules,Linear Algebra and Its Applications 428 (2008),992—1000.

[10]J.Lorch and Q. Xu. Toeplitz algebrason discrete groups and their natural morphisms, Chinese Annals of Mathematics (Ser. B) 26 (2005), 143—152.

[11]J. Lorch and Q. Xu. Quasi-lattice ordered groups and Toeplitz algebras. Journal of Operator Theory 50 (2003), 221—247.

[12]Q. Xu. Diagonal invariant ideals of Toeplitzalgebras on discrete groups, Science in China(Ser. A). 45 (2002), 462—469.

[13]Q. Xu. The natural morphisms between Toeplitzalgebras on discrete groups, Journal ofthe London Mathematical Society (2) 61 (2000), 593—603.

[14]Q. Xu. Toeplitz algebras on discrete abelianquasily ordered groups, Proceedings ofthe American Mathematical Society 128 (2000), 1405—1408.

[15]Q. Xu. The minimal closed non-trivial ideals ofToeplitz algebras on discrete groups. ChineseAnnals of Mathematics (Ser. B) 21 (2000), 367—374.

[16]Q. Xu and X. Chen. Toeplitz C*-algebras on orderedgroups and their ideals of finite elements.Proceedings of the American Mathematical Society 127 (1999), 553—561.

[17]Q. Xu and X. Chen. Fredholm operators in Toeplitzalgebras associated with discrete abelian groups, Chinese Science Bulletin 43 (1998), 1175—1179.

[18]Q. Xu and X. Chen. A note on Toeplitz operators ondiscrete groups, Proceedings of theAmerican Mathematical Society 126 (1998), 3625—3631.

[19]X. Chen, Q. Xu and S. Xu. Irrational rotation C *-algebra for groupoidC*-algebra, Chinese Annals ofMathematics (Ser. B) 16 (1995), 445—452.

相关话题/导师