东北大学 理学院, 辽宁 沈阳 110819
收稿日期:2017-03-28
基金项目:国家自然科学基金资助项目(61673100)。
作者简介:杨冬梅(1966-), 女, 辽宁沈阳人, 东北大学教授。
摘要:对含有不确定参数的时变时滞切换广义系统的鲁棒指数容许性问题和鲁棒指数镇定问题进行了研究.通过利用自由权矩阵和平均驻留时间的方法, 针对该类切换广义时滞系统, 给出了其鲁棒指数容许的充分条件.在此基础上设计有记忆状态反馈控制器, 利用广义系统Lyapunov稳定性理论和LMI方法, 得到了使相应的闭环系统正则、无脉冲且指数稳定的充分条件.最后, 通过仿真算例对该方法的有效性和可行性进行验证.
关键词:广义系统切换系统时滞指数稳定记忆反馈
Robust Exponential Control for a Class of Switched Singular Time-Delay Systems
YANG Dong-mei, YAO Qi
School of Sciences, Northeastern University, Shenyang 110819, China
Corresponding author: YAO Qi, E-mail: yaoqi172017@163.com
Abstract: The robust exponential admissibility problems and robust exponential stability control problems of uncertain switched singular time-varying delay systems were studied. By way of free-weighting matrices and average dwell time methods, the sufficient condition of exponential admissibility of uncertain switched singular time-delay systems was given. Then on the basis of linear matrix inequality (LMI) approach and the singular system Lyapunov stability theory, a state feedback controller with memory was designed, resulting in the regular, impulse free, and exponentially stable closed-loop systems. Finally, the feasibility and validity of the proposed method were finally demonstrated by illustrative example.
Key Words: singular systemswitched systemtime-delayexponential stabilizationmemory feedback
随着现代控制理论与方法应用于工程系统和向其他学科的不断深入, 一类更具广泛形式的系统得到了很多关注, 被称为“切换广义系统”.同时, 在实际控制问题中系统不可避免地带有不确定性和时滞现象, 因此要求所设计的控制器应具有鲁棒性和时滞项, 使得其在运行过程中能够允许这些不确定性的存在.因此对于不确定切换广义时滞系统的鲁棒指数容许及鲁棒镇定问题的研究具有重要的现实意义[1-4].文献[5]中所考虑的不确定性不仅包括状态矩阵和输入矩阵的不确定性, 还包括了导数矩阵的不确定性, 针对奇异时滞系统的鲁棒H∞镇定问题, 利用自由权矩阵的方法进行了研究.文献[6]对离散切换时滞系统构造分段Lyapunov泛函, 利用平均滞留时间和状态变量转化的方法, 得到一类特殊的切换信号, 从而保证了该系统的指数稳定性.文献[7]利用松弛矩阵和参数Lyapunov-Krasovskii泛函来解耦系统矩阵, 得到基于严格线性矩阵不等式表示的广义时滞系统的时滞相关的控制条件.
本文针对一类不确定切换广义时滞系统, 研究了鲁棒容许性和鲁棒指数镇定问题.基于平均滞留时间和自由权矩阵的方法, 利用广义Lyapunov稳定性理论, 首先讨论该系统的鲁棒指数容许性, 之后设计了一种有记忆的状态反馈控制器, 使闭环系统正则、无脉冲且指数稳定.
1 问题描述考虑带有参数不确定性的切换广义时滞系统
(1) |
(2) |
(3) |
(4) |
定义2[8]????考虑系统(1)在给定的切换信号下, 如果存在正实数c和λ使得系统(1)的解满足下面不等式:
引理1[9]????给定具有适当维数的矩阵Q=QT, H, E, 则
引理2[9]????若存在对称矩阵X, 使得
(5) |
(6) |
(7) |
证明:首先证明自治系统(1)是正则、无脉冲的.因为rankE≤n, 所以一定存在两个非奇异矩阵S, U∈Rn×n满足:
显然Ai22是非奇异的, 根据引理1可知, 不含控制器的系统(1)是正则、无脉冲的. “*”表示与结果无关被省略的项.考虑第i个子系统, 定义以下正定的Lyapunov-Krasovskii泛函:
(8) |
(9) |
(10) |
那么, 对于切换信号σ(t)满足:
(11) |
(12) |
(13) |
(14) |
定理2????考虑系统(1), 对于给定常数λ>0, ρ≠0,
证明:由定理1及引理2, 如果存在具有适当维数的非奇异实矩阵Pi, 对称矩阵Qi>0, Zi>0, N1i, N2i, 以及正数ε>0,使其满足:
(15) |
(16) |
(17) |
3 仿真实例考虑含有两个子系统的切换广义时滞系统(1), 其中,
参考文献
[1] | Kchaou M, Gassara H, EI-Hajjaji A. Robust observer-based control design for uncertain singular systems with time-delay[J].Control Signal Process, 2014, 28(7): 169–183. |
[2] | Lin J X, Gao Z F. Observers design for switched discrete-time singular time-delay systems with unknown inputs[J].Nonlinear Analysis:Hybrid Systems, 2015, 18: 85–99.DOI:10.1016/j.nahs.2015.06.004 |
[3] | Lin J X, Fei S M. Robust exponential admissibility of uncertain switched singular time-delay systems[J].Acta Automatica Sinica, 2010, 36(12): 1773–1779.DOI:10.1016/S1874-1029(09)60071-9 |
[4] | Zamani I, Shafiee M. On the stability issues of switched singular time-delay systems with slow switching based on average dwell-time[J].Robust Nonlinear Control, 2014, 24(4): 595–624.DOI:10.1002/rnc.v24.4 |
[5] | Ren J C, Zhang Q L. Simultaneous robust normalization and delay-dependent robust H∞stabilization for singular time-delay systems with uncertainties in the derivative matrices[J].International Journal of Robust & Nonlinear Control, 2015, 25(18): 3528–3545. |
[6] | Zhang W A, Yu L. Stability analysis for discrete-time switched time-delay systems[J].Automatica, 2009, 45: 2265–2271.DOI:10.1016/j.automatica.2009.05.027 |
[7] | Liu L L, Wu B W, Wang Y E. Robust H∞ control for singular time-delay systems via parameterized Lyapunov functional approach[J].Mathematical Problems in Engineering, 2014, 2014: 1–9. |
[8] | Moezzi K, Aghdam A G. Delay-dependent robust stability analysis for switched time-delay systems with polytopic uncertainties[J].Robust Nonlinear Control, 2015, 25: 1623–1637.DOI:10.1002/rnc.v25.11 |
[9] | 吴敏, 何勇. 时滞系统鲁棒控制[M]. 北京: 科学出版社, 2008: 105-126. ( Wu Min, He Yong. Robust control for time-delay systems[M]. Beijing: Science Press, 2008: 105-126.) |
[10] | Chaibi N, Tissir E H. Delay dependent robust stability of singular systems with time-varying delay[J].International Journal of Control, Automation, and Systems, 2012, 10(3): 632–638.DOI:10.1007/s12555-012-0321-9 |