陈海波教授
自我介绍
陈 海波, 中南大学教授、博士生导师。先后获理学学士、硕士、博士学位。在武汉大学数学博士后流动站做博士后;在牛津大学数学研究所做访问学者。一直在高等学校从事 教学、科研和管理工作,主要研究兴趣为常微分方程定性理论、差分方程理论与应用、常微分方程边值问题、偏微分方程理论与应用、数学生态学模型。在平面微分 系统的中心焦点判定与极限环分支以及微分方程边值问题、哈密顿系统与薛定锷方程解与多解的存在性等研究领域取得了一系列重要学术成果。先后评为省级青年骨 干教师、校级优秀教师、优秀共产党员。获宝钢优秀教师奖、校级省级优秀教学成果奖各2项。主编教材3本,在国内外重要学术刊物上发表论文100多篇,其中 SCI、EI收录论文80多篇、ESI高引论文3篇。主持国家自然科学基金面上项目2项,湖南省自然科学基金面上项目1项、重点项目1项及教育部留学回国 人员科研启动基金项目1项。
电子邮箱
math_chb@csu.edu.cn
研究方向
常微分方程;偏微分方程;数学生态学模型
主讲课程
常微分方程,微分方程定性理论,稳定性理论,微分方程泛函方法,抽象空间中的微分方程,向量场的分岔理论,极限环论,高等数学
学习经历
1981年起:
湘潭大学数学专业本科毕业;
湖南大学应用数学专业硕士毕业;
中南大学概率统计专业博士毕业;
武汉大学应用数学专业博士后研究;
牛津大学数学研究所访问学者。
工作经历
在研项目
1. 变分方法与脉冲微分系统周期解及同宿轨研究,国家自然科学基金面上项目(11271372),主持
2. 变分方法与脉冲微分系统周期解研究,湖南省自然科学基金重点项目(12JJ2004),主持
完成项目
1.平面微分系统的中心问题与极限环分支,国家自然科学基金面上项目(10871206),主持
2.平面微分系统的中心焦点判定与极限环分支,教育部留学回国人员科研启动基金项目,教外司留[2008]0814,主持
3.具有时滞的离散生态数学模型的建立与定性研究,国家自然科学基金面上项目(19601016),参与
4.渔业数学生态学模型及其应用,湖南省教委科研基金项目,参与
5.多项式系统的极限环理论及其应用,中南大学科研课题,主持
6.平面多项式微分系统赤道的稳定性与极限环分支,湖南省自然科学基金面上项目(05JJ30010),主持
7.非线性波动方程的长时间行为和近似惯性流形,湖南省自然科学基金面上项目(98JJY2034),参与
获奖情况
湖南省高等学校优秀教学成果二等奖,排名3
湖南省高等学校优秀教学成果三等奖,排名3
2011年中南大学校级优秀教学成果二等奖,排名1
2012年中南大学优秀研究生(博士生)学术奖一等奖,指导教师
2012年宝钢优秀教师奖
发表论文
[108]Hongxia Shi, Haibo Chen. Multiplicity results for a class of boundary value problems with impulsive effects. Mathematische Nachrichten, 1–9 (2015) / DOI 10.1002/ mana. 201400341.(SCI)
[107]Hongliang Liu, Haibo Chen,Xiaoxia Yang. Least energy sign-changing solutions for nonlinear Schr¨odinger equations with indefinite-sign and vanishing potential.Applied Mathematics Letters,53(2016), 100-106.(SCI)
[106]Liping Xu, Haibo Chen. Nontrivial solutions for Kirchhoff-type problems with a parameter. Journal of Mathematical Analysis and Applications, 433:1, 2016,455-472(SCI)
[105]Hongliang Liu, Haibo Chen, Yueding Yuan.Multiplicity of nontrivial solutions for a class of nonlinear Kirchhoff-type equations.Boundary Value Problems 2015, 2015:187 doi:10.1186/s13661-015-0452-z.(SCI)
[104]Hongxia Shi, Haibo Chen, Hongliang Liu.Morse theory and local linking for a class of boundary value problems with impulsive effects.Journal of Applied Mathematics and Computing, DOI 10.1007/s12190-015-0909-3
[103]Jianxin Cao, Haibo Chen, Weifeng Yang.Existence and continuous dependence of mild solutions for fractional neutral abstract evolution equations.Advances in Difference Equations 2015, 2015:6 (15 January 2015)(SCI)
[102]Hongliang Liu, Haibo Chen.Ground-state solution for a class of biharmonic equations including critical exponent. Zeitschrift für angewandte Mathematik und Physik,2015 DOI 10.1007/s00033-015-0583-1(SCI)
[101]Hongxia Shi, Haibo Chen.Ground state solutions for asymptotically periodic coupled Kirchhoff-type systems with critical growth.Mathematical Methods in the Applied Sciences,4 SEP 2015,DOI: 10.1002/mma.3633(SCI)
[100]Hongxia Shi, Haibo Chen.Multiple solutions forP-Laplacian boundary-value problems with impulsive effects.Electronic Journal of Differential Equations, 2015 (2015),207,1-9.(SCI)
[99]Hongxia Shi, Haibo Chen.Multiple solutions for fractional Schrodinger equations.Electronic Journal of Differential Equations, 2015 (2015),25,1-11.(SCI)
[98]Liping Xu, Haibo Chen.Multiple solutions for the nonhomogeneous fourth order elliptic equations for Kirchhoff-type. Taiwanese Journal of Mathematics, 19(4), 2015. 1215-1226.(SCI)
[97]Haibo Chen, Hongliang Liu, Liping Xu.Existence and multiplicity of solutions for nonlinear Schrodinger-Kirchhoff-type equations.Journal of the Korean Mathematical Society, 2015.8 (SCI)
[96]Hongliang Liu, Haibo Chen.Multiple solutions for an indefinite Kirchhoff-type equation with sign-changing potential. Electronic Journal of Differential Equations, 2015 (2015),274,1-9.(SCI)
[95]Liping Xu, Haibo Chen. Multiplicity results for fourth order elliptic equations of Kirchhoff-type. Acta Mathematica Scientia, 35:5,2015, 1067-1076(SCI)
[94]Hongliang Liu, Haibo Chen. Least energy nodal solution for a quasilinear biharmonic equation with critical exponent in RN. Applied Mathematics Letter, 48,2015,85-90.(SCI)
[93]Liping Xu, Haibo Chen. Existence and multiplicity of solutions for nonhomogeneous
Klein-Gordon-Maxwell equations, Electron. J. Diff. Equ., 102,2015 (2015), 1-12.
[92]Yulin Zhao, Haibo Chen,Qiming Zhang. Infinitely many solutions for fractional differential equations via variational methods.Journal of Applied Mathematics and Computing. Mar. 29, 2015.DOI 10.1007/s12190-015-0886-6
[91]Yulin Zhao, Haibo Chen, Bin Qin.
Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods.Applied Mathematics and Computation, 257, 15 April 2015, 417-427.(SCI)
[90]Yusen Wu, Peiluan Li, Haibo Chen. Calculation of singular point quantities at infinity for a type of polynomial differential systems. Mathematics and Computers in Simulation, 2015:109,153-173(SCI)
[89]Xiaoxia Yang,Haibo Chen.Existence of periodic solutions for a damped vibration problem with (q, p) - Laplacian. Bulletin of the Belgian Mathematical Society Simon Stevin, 21(1),2014,51-66
[88]Junjun Zhou, Haibo Chen, Belal O.M. Almuaalemi. Existence and multiplicity of solutions for some damped Dirichlet nonlinear impulsive differential equations. Differential Equations and Dynamical Systems, 2014
[87]Hongliang Liu, Haibo Chen, Xiaoxia Yang. Multiple solutions for superlinear Schrodinger-Poisson systems with sign-changing potential and nonlinearity. Computers and Mathematics with Applications, 2014: 68(12),1982-1990
(SCI)
[86]Liping Xu, Haibo Chen.Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type via genus theory. Boundary Value Problems, 2014, 2014:212,1-12(SCI)
[85]Liping Xu, Haibo Chen.Existence of infinitely many solutions for generalized Schr?dinger-Poisson system. Boundary Value Problems, 2014, 2014:196,1-12(SCI)
[84]Liping Xu, Haibo Chen.Multiplicity of small negative-energy solutions for a class
of nonlinear Schrodinger–Poisson systems. Applied Mathematics and Computation,243, 2014, 817-824.(SCI)
[83]Yulin Zhao, Haibo Chen and Qiming Zhang. Multiple solutions of three-point boundary value problems for second-order impulsive differential equation at resonance.Boundary Value Problems,2014, 2014:103.(SCI)
[82]Yulin Zhao, Haibo Chen and Bin Qin.Periodic boundary value problems for second-order functional differential equations with impulse.Advances in Difference Equations,2014, 2014:134.(SCI)
[81]Hongxia Shi, Haibo Chen, Qi Zhang.Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects. Journal of Applied Mathematics and Computing,46(2014),93-106.(EI)
[80]Xiaoxia Yang, Haibo Chen.Existence of periodic solutions for sublinear second order dynamical system with (q, p)-Laplacian. Mathematica Slovaca (63)4(2013),799-816(SCI)
[79]Yulin Zhao, Haibo Chen and Qiming Zhang.Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivatives.Boundary Value Problems 2013, 2013:103 (25 April 2013)(SCI)
[78]Liu Yang, Haibo Chen, Liping Luo.Successive iteration and positive solutions for boundary value problem of nonlinear fractional q-difference equation. Journal of Applied Mathematics and Computing (2013)
[77]Juntao Sun, Jifeng Chu, Haibo Chen.Periodic solution generated by impulses for singular differential equations.Journal of Mathematical Analysis and Applications,404(2),2013,562-569.(SCI)
[76]Yulin Zhao,Haibo Chen, Qiming Zhang.Existence results for fractional q-difference equations with
nonlocal q-integral boundary conditions.Advances in Difference Equations 2013, 2013:48
[75]Cao, Jianxin; Chen, Haibo. The Iterative Solution of Generalized Sturm-Liouville Boundary Value Problem in Banach Spaces.Funkcialaj Ekvacioj Internacia, 55:3,2012,429-446(SCI)
[74]Yulin Zhao,Guobing Ye,Haibo Chen.Multiple Positive Solutions of a Singular Semipositone Integral
Boundary Value Problem for Fractional q-Derivatives Equation.Abstract and Applied Analysis,Volume 2013, Article ID 643571, 12 pages
[73]Yueding Yuan, Haibo Chen, Chaoxiong Du, Yuejin Yuan.The limit cycles of a general Kolmogorov system.Journal of Mathematical Analysis and Applications,392(2),2012,225-237.(SCI)
[72]Yulin Zhao, Haibo Chen, Li Huang. Existence of positive solutions for nonlinear fractional functional differential equation. Computers & Mathematics with Applications, 64(10),2012, 3456-3467.(SCI)
[71]Haibo Chen, Hongwu Tong, Juntao Sun. Periodic solutions of second order differential equations with multiple delays. Advances in Difference Equations 2012, 2012:43, doi: 10.1186/1687-1847-2012-43.
[70]Juntao Sun, Haibo Chen, Jifeng Chu. On periodic Hamiltonian elliptic systems with spectrum point zero. Mathematische Nachrichten,285(17-18), 2012, 2233 – 2251.(SCI)
[69]Yulin Zhao, Haibo Chen, Chengjie Xu; Existence of multiple solutions for three-point boundary-value problems on infinite intervals in Banach spaces. Electronic Journal of Differential Equations,44,2012 (2012),1-11.
[68]Yusen Wu, Peiluan Li, Haibo Chen. Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a cubic Lyapunov system.Communications in Nonlinear Science and Numerical Simulation,17(1), 2012, 292-304.(SCI)
[67]Zhisu Liu, Haibo Chen and Cheng Liu.Positive solutions for singular third-order nonhomogeneous boundary value problems.Journal of Applied Mathematics and Computing,38(1),2012,161-172.
[66]Juntao Sun, Haibo Chen, Juan J. Nieto.On ground state solutions for some non-autonomous Schr?dinger–Poisson systems.Journal of Differential Equations,252(5), 2012, 3365-3380. (SCI)
[65]Jianxin Cao, Haibo Chen.Impulsive fractional differential equations with nonlinear boundary conditions. Mathematical and Computer Modelling, 55( 3), 2012, 303-311. (SCI)
[64]Jianxin Cao, Haibo Chen.Positive Solution of Singular Fractional Differential Equation in Banach Space.Journal of Applied Mathematics, 2011(SCI)
[63]Xiaoxia Yang,Haibo Chen. Periodic Solutions for Autonomous (q,p)-Laplacian System with Impulsive Effects. Journal of Applied Mathematics,2011, (SCI)
[62]Liu Yang, Haibo Chen. Unique positive solution of boundary value problem for fractional differential equations. Journal of Biomathematics, 26(1), 2011, 43-47.
[61]Liu Yang, Haibo Chen, Juntao Sun.Infinitely many homoclinic solutions for some second order Hamiltonian systems.Nonlinear Analysis: Theory, Methods & Applications, 74(17)2011, 6459-6468. (SCI)
[60]Liu Yang, Haibo Chen.Nonlocal boundary value problem for impulsive differential equations of gractional order. Advance in difference equations: Art No.404917, 2011. (SCI)
[59]Qi Zhang, Yirong Liu, Haibo Chen. On the equivalence of singular point quantities and the integrability of a fine critical singular point.Nonlinear Analysis: Real World Applications,12, 2011, 2794–2801.(SCI)
[58]Liu Yang, Haibo Chen, Xiaoxia Yang.Multiplicity of solutions for fourth-order equation generated by boundary condition.Applied Mathematics Letters, 24(9), 2011, 1599-1603.(SCI)
[57]Juntao Sun, Haibo Chen, Juan J. Nieto.Infinitely many solutions for second-order Hamiltonian system with impulsive effects. Mathematical and Computer Modelling, 54(1-2), 2011, 544-555.
[56]Liu Yang, Haibo Chen. Existence and multiplicity of periodic solutions generated by impulses. Abstract and Applied Analysis, 2011, Article ID 310957, 15 pages.
[55]Chaoxiong Du, Heilong Mi, Haibo Chen.The Bifurcation of limit cycles for a planar seventh order differential system. Journal of System Science and Mathematics Sciences, 30(10),2010,1386-1398.
[54]Jianxin Cao, Haibo Chen. Some results on impulsive boundary value problem for fractional differential inclusions. Electronic Journal of Qualitative Theory of Differential Equations, 11, 2010, 1-24.(SCI)
[53]Jianxin Cao, Haibo Chen,Jin Deng.Positive solutions of the second-order system of differential equations in Banach spaces. J. Appl. Math. & Informatics, 28(5-6), 2010, 1445-1460.
[52]Liu Yang,Haibo Chen. Nonlocal Boundary alue Problem for Impulsive Differential Equations of Fractional Order, Advances in Difference Equations, vol. 2011, Article ID 404917, 16 pages, 2011. doi:10.1155/2011/404917.
[51]Zhisu Liu, Haibo Chen. Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem, Computers and Mathematics with Applications, 61,2011, 1687-1699.
[50]Juntao Sun, Haibo Chen and Liu Yang.Variational methods to fourth-order impulsive differential equations.Journal of Applied Mathematics and Computing, 35(1-2), 2011, 323-340.(EI收录)
[49]Juntao Sun, Haibo Chen, Juan J. Nieto.Homoclinic orbits for a class of first-order nonperiodic asymptotically quadratic Hamiltonian systems with spectrum point zero.Journal of Mathematical Analysis and Applications,378(1),2011,117-127.(SCI)
[48]Juntao Sun, Haibo Chen, Liu Yang.Positive solutions of asymptotically linear Schrodinger–Poisson systems with radial potential vanishing at infinity. Nonlinear Analysis: Theory, Methods & Applications,74(2), 2011,413-423.(SCI)
[47]Juntao Sun, Haibo Chen, Juan J. Nieto. Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. Journal of Mathematical Analysis and Applications, 373(1), 2011, 20-29.(SCI)
[46]Zuowei Cai, Lihong Huang, Haibo Chen.Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays.Applied Mathematics and Computation, 217(10),2010,4866-4878.(SCI)
[45]Chaoxiong Du, Haibo Chen, Yirong Liu.Center problem and bifurcation behavior for a class of quasi analytic systems.Applied Mathematics and Computation, 217(9), 2011,4665-4675.(SCI)
[44]Juntao Sun, Haibo Chen and Tiejun Zhou. Multiplicity of solutions for a fourth-order impulsive differential equation via variational methods. Bull. Aust. Math. Soc. 82 (2010), 446–458
doi:10.1017/S0004972710001802 (SCI)
[43]Peiluan Li, Haibo Chen, Yusen Wu.Multiple Positive Solutions for an n-Point Nonhomogeneous Boundary Value Problems in Banach Spaces.Results in Mathematics, 58, 2010, 297–316.
[42]Peiluan Li, Haibo Chen, Yusen Wu.Multiple positive solutions of n-point boundary value problems for p-Laplacian impulsive dynamic equations on time scales.Computers & Mathematics with Applications, 60(9), 2010,2572-2582.(SCI)
[41]Chaoxiong Du, Yirong Liu, Haibo Chen. The Bifurcation of limit cycles in Zn-equivariant vector fields. Applied Mathematics and Computation, 217(5), 2010, 2041-2056.(SCI)
[40]Haibo Chen, Juntao Sun. An application of variational method to second-order impulsive differential equation on the half-line. Applied Mathematics and Computation, 217(5), 2010,1863-1869.(SCI)
[39]Liu Yang,Haibo Chen.Unique positive solution for boundary value problem of fractional differential equations. Applied Mathematics Letters, 23(9), 2010, 1095-1098. (SCI)
[38]Juntao Sun, Haibo Chen. Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems. Nonlinear Analysis: Real World Applications, 11(5), 2010,4062-4071.(SCI)
[37]Juntao Sun, Haibo Chen, Liu Yang. Existence and multiplicity of solutions for an impulsive differential equation with two parameters via variational method. Nonlinear Analysis: Theory, Methods & Applications, 73(2), 2010, 440-449. (SCI)
[36]Yulin Zhao, Haibo Chen. Existence of multiple positive solutions for singular functional differential equation with sign-changing nonlinearity. Journal of Computational and Applied Mathematics,234(5), 2010,1543-1550.(SCI)
[35]Juntao Sun, Haibo Chen, Juan J. Nieto, Mario Otero-Novoa. Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects.Nonlinear Analysis: Theory, Methods & Applications, 72(12),2010, 4575-4586.(SCI)
[34]Liu Yang,Haibo Chen.Existence and multiplicity of solutions to even order ordinary differential equations via variational methods. Nonlinear Analysis: Theory, Methods & Applications,72(7-8),2010, 3422-3428.(SCI)
[33]Qinlong Wang, Yirong Liu, Haibo Chen. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems.Bulletin des Sciences Mathématiques, 134(7),2010,786-798.(SCI)
[32] Juntao Sun, Haibo Chen. Variational method to the impulsive equation with Neumann boundary conditions, Boundary Value Problems, 2009 (2009), Article ID 316812(11 October 2009), 17 pages(SCI)
[31] Yulin Zhao, Haibo Chen. Triple positive solutions for nonlinear boundary value problems in Banach space, Computers & Mathematics with Applications, 58(9), 2009, 1780-1787. (SCI)
[30]Juntao Sun, Haibo Chen. Multiple positive solutions for multi-point boundary value problems with a p-Laplacian on the half-line,Journal of Applied Mathematics and Computing,33(1-2), 2010, 173-191.
[29]Peiluan Li, Haibo Chen and Yusen Wu. Existence of solutions of n -point boundary value problems on the half-line in Banach spaces, Acta Applicandae Mathematicae, 110(2),2010,785-795.
[28]Haihua Wang, Haibo Chen. Existence of positive solutions for a system of second-order m-point BVPs with variable parameters, Journal of Applied Mathematics and Computing, 31(1-2),2009,517–531.
[27]Peiluan Li, Haibo Chen, Qi Zhang. Multiple positive solutions of n-point boundary value problems on the half-line in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 14(7), 2009, 2909-2915. (SCI)
[26]Haibo Chen, Peiluan Li. Exstence of solutions of three-point boundary value problems in Banach spaces, Mathematical and Computer Modelling, 49(3-4), 2009, 780-788. (SCI)
[25]Haibo Chen, Yirong Liu, Pei Yu. Center and isochronous center at infinity in a class of planar differential systems. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 15(1), 2008, 57-74. (SCI)
[24]Yulin Zhao, Haibo Chen. Multiplicity of solutions to two-point boundary value problems for second-order impulsive differential equations. Applied Mathematics and Computation,206(2), 2008, 925-931.
[23]Haibo Chen, Peiluan Li. Three-point Boundary value problems for second-order ordinary differential equations in Banach spaces, Computers and Mathematics with Applications,56(7),2008,1852-1860. (SCI)
[22] Haibo Chen and Haihua Wang, Triple positive solutions of boundary value problems for p-Laplacian impulsive dynamic equations on time scales, Mathematical and Computer Modelling,47(9-10)(2008),917-924.(SCI)
[21]Yulin Zhao, Haibo Chen. Existence of multiple positive solutions for m-point boundary value problems in Banach spaces. Journal of Computational and Applied Mathematics, 215(1)(2008),79-90. (SCI)
[20]Yulin Zhao, Haibo Chen. Approximate System for Quadratic Hamiltonian System with Multiple Limits. Journal of Hunan University of Technology(in Chinese), 22(2), 2008, 25-28.
[19] Yulin Zhao, Haibo Chen. The upper bound of the number of limit cycles for a class of non-Hamiltonian integral system. College Mathematics(in Chinese), 24(5),2008,34-37.
[18]Haibo Chen, Haihua Wang, Qi Zhang, Tiejun Zhou. Double positive solutions of boundary value problems for p-Laplacian impulsive functional dynamic equations on time scales. Computers & Mathematics with Applications,53(10),2007,1473-1480.(SCI)
[17] Haibo Chen. Positive solution for nonhomogeneous three-point boundary value problem of second order differential equations. Mathematics and Computer Modelling, 45(2007), 844-852. (SCI)
[16] Haihua Wang, Haibo Chen. Positive solutions of a nonlinear second-order n-point boundary value problem . Applied Mathematics and Computation. 186(2,) 2007, 1129-1136. (SCI)
[15] Haihua Wang, Haibo Chen. Boundary value problem for second-oder impulsive functional differential equations. Applied Mathematics and Computation, 191(2), 2007, 582-591. (SCI)
[14] Yulin Zhao, Haibo Chen. On Qualitative Analysis of Predator-Prey System with Functional Response Function kx~θ/(a+x~θ). Mathematics in Practice and Theory(in Chinese), 37(5),2007, 118-121.
[13] Yulin Zhao, Haibo Chen. Existence and Uniqueness of Limit Cycles of a Predator-Prey System with Functional Response kx~θ. Journal of Biomathematics(in Chinese), 21(4),2006,515-520.
[12]Haibo Chen, Haihua Wang, Global attractivity of the difference equation. Applied Mathematics and Computation, 181(2),2006,1431-1438. (SCI)
[11] Qi Zhang, Yirong Liu and Haibo Chen. Bifurcation at the equator for a class of quintic polynomial differential system. Applied Mathematics and Computation,181(1),2006,747-755. (SCI)
[10] Haihua Wang, Haibo Chen. Existence of Triple Positive Solutions for Second Order Multi-point Boundary Value Problem. Journal of Changsha Communications University(in Chinese), 22(3), 2006, 83-86.
[9]Haibo Chen, Yirong Liu, Xianwu Zeng. Algebraic Recursion Formulas for Quantities of Equator in a Planar Polynomial Differential System. Acta Mathematica Sinica, 48(5), 2005, 963-972.
[8]Haibo Chen, Yirong Liu, Zeng Xianwu. Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system, Bulletin Des Sciences Mathematiques, 129, 2005, 127-138.(SCI)
[7]Haibo Chen, Yirong Liu. Linear recursion formulas of quantities of singular point and applications, Applied Mathematics and Computation, 148(1)2004, 163-172.(SCI)
[6] Haibo Chen, Yirong Liu. Limit cycles of the equator in a quintic polynomial system. Chinese Annals of Mathematics, 24A:2, 2003, 219-224.
[5]Yirong Liu, Haibo Chen. Stability and bifurcation of limit cycles of the equator in a class of cubic polynomial system. Computers and Mathematics with Applications, 44(2002), 997-1005.(SCI)
[4] Haibo Chen, Yirong Liu. Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Mathematicae Applicatae Sinica, 25(2), 2002, 295-302.
[3] Haibo Chen,Jiaowan Luo. Stability and bifurcation of limit cycles of the equator in a class of septic polynomial systems. Mathematica Applicata(in Chinese), 15(2), 2002, 22-25.
[2] Haibo Chen. The problem of centers of polynomial vector fields. Mathematics Theory with Applications, 22(2),2002, 64-67.
[1]Haibo Chen, Yirong Liu. Limit cycles in a generalized Gause-type predator-prey system. Journal of CSUT, 8(4), 2001, 283-286.(SCI)