摘要GloVe模型是一种广泛使用的词向量表示学习的模型。许多研究发现,学习得到的词向量维数越大,性能越好;但维数越大,模型学习耗时越长。事实上,GloVe模型中,耗时主要表现在两方面,一是统计词对共现矩阵,二是训练学习词向量表示。该文在利用GloVe模型统计语料中词对共现时,基于对称或非对称窗口得到两个共现矩阵,然后分别学习得到较低维度的词向量表示,再拼接得到较高维度的词向量表示。从计算的复杂度来看,该文方法并不会产生多的计算量,但显然统计共现矩阵和训练学习可通过并行方式实现,能够显著提高计算效率。在使用大规模语料的实验中,以对称和非对称窗口分别统计得到共现矩阵,分别学习得到300维词向量表示,再使用拼接方式得到600维词向量表示。与GloVe模型对称和非对称的600维的词向量相比,在中文和英文的词语推断任务上,显著地提高了预测的准确率,在词语聚类任务上,有较好的聚类效果,验证了该文方法的有效性。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3112
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
一种改进的GloVe词向量表示学习方法
本站小编 Free考研考试/2022-01-02
相关话题/统计 计算 中文 实验 英文
基于视觉-语义中间综合属性特征的图像中文描述生成算法
摘要图像描述是计算机视觉、自然语言处理与机器学习的交叉领域多模态信息处理任务,需要算法能够有效地处理图像和语言两种不同模态的信息。由于异构语义鸿沟的存在,该任务具有较大的挑战性。目前主流的研究仍集中在基于英文的图像描述任务,对图像中文描述的研究相对较少。图像视觉信息在图像描述算法中没有得到足够的重视 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向中文新闻文本分类的融合网络模型
摘要针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于深度学习的中文短语复述抽取技术研究
摘要复述抽取是自然语言处理任务中的一个重要分支,高质量的复述资源对于提升信息检索、问答系统、机器翻译等任务的效果有很大帮助。该文将任务限定在中文短语复述抽取,提出了基于2BiLSTM+CNN+CRF的序列标注模型,用于单语中文语料短语划分,通过若干过滤规则获取优质中文短语。之后又提出了基于表示学习的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02中文词汇增长研究
摘要词汇增长研究能够分析文本的TTR在不同时期的变化,该文选取1954—2018年的中国政府工作报告为语料,分析文本中词例与词种的曲线变化,挖掘政府工作报告中的词汇丰富度与政策的相互关系。该文首先对语料进行了分词,然后根据曲线拟合效果选择拟合更好的Heaps模型进行预测。以中国的“五年计划”作为基础 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于百科语料的中英文双语词典提取
摘要双语词典是跨语言自然语言处理中一项非常重要的资源。目前提取双语词典的方法主要是基于平行语料库和基于可比语料库,但是这两种方法在提取新词或者某些技术术语时都存在双语资源匮乏的问题。相比之下,基于部分双语语料的方法由于利用的是新闻或者百科知识,故可以很好地解决这个问题,然而目前基于部分双语语料的方法 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于门控空洞卷积的高效中文命名实体识别方法
摘要近年来,基于RNN的模型架构在命名实体识别任务中被广泛采用,但其循环特性导致GPU的并行计算能力无法被充分利用。普通一维卷积虽可以并行处理输入文本,显著缩短模型训练时长,但处理长文本时往往需要堆叠多个卷积层,进而增加梯度消失的风险。针对以上问题,该文采用可通过参数调节感受野范围的空洞卷积,并引入 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于Transformer网络的中文单字词检错方法研究
摘要错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于篇章主题的中文宏观篇章主次关系识别方法
摘要篇章分析是自然语言处理领域研究的热点和重点。作为篇章分析的任务之一,篇章主次关系研究篇章的主要和次要内容,从而更好地理解和把握篇章的核心内容。该文重点研究宏观领域的中文篇章主次关系,提出了一种基于篇章主题的中文宏观篇章主次关系识别方法。该方法利用篇章单元间、篇章单元与篇章主题间的语义交互来识别主 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02部首感知的中文医疗命名实体识别
摘要人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一个面向中文古诗词理解难易度的人工标注数据集
摘要向读者推荐阅读难度合适的古诗词有助于提升读者的诗词鉴赏能力。现阶段,围绕古诗词可读性自动化分析的相关研究的突出局限之一是缺乏大规模高质量的数据集。针对该问题,该文研究面向古诗词可读性自动化分析的数据集构建。该文作者对外开放了包含1915篇古诗词的标注阅读理解难度的数据集①。该文首先将数据集划分成 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02