摘要图像描述是计算机视觉、自然语言处理与机器学习的交叉领域多模态信息处理任务,需要算法能够有效地处理图像和语言两种不同模态的信息。由于异构语义鸿沟的存在,该任务具有较大的挑战性。目前主流的研究仍集中在基于英文的图像描述任务,对图像中文描述的研究相对较少。图像视觉信息在图像描述算法中没有得到足够的重视,算法模型的性能更多地取决于语言模型。针对以上两个方面的研究不足,该文提出了基于多层次选择性视觉语义属性特征的图像中文描述生成算法。该算法结合目标检测和注意力机制,充分考虑了图像高层视觉语义所对应的中文属性信息,抽取不同尺度和层次的属性上下文表示。为了验证该文算法的有效性,在目前规模最大的AI Challenger 2017图像中文描述数据集以及Flick8k-CN图像中文描述数据集上进行了测试。实验结果表明,该算法能够有效地实现视觉-语义关联,生成文字表述较为准确、内容丰富的描述语句。较现阶段主流图像描述算法在中文语句上的性能表现,该文算法在各项评价指标上均有约3%~30%的较大幅度提升。为了便于后续研究复现,该文的相关源代码和模型已在开源网站Github上公开。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3125
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于视觉-语义中间综合属性特征的图像中文描述生成算法
本站小编 Free考研考试/2022-01-02
相关话题/图像 中文 视觉 信息 数据
基于信息增强BERT的关系分类
摘要关系分类是自然语言处理领域中重要的语义处理任务,随着机器学习技术的发展,预训练模型BERT在多项自然语言处理任务中取得了大量研究成果,但在关系分类领域尚有待探索。该文针对关系分类的问题特点,提出一种基于实体与实体上下文信息增强BERT的关系分类方法(EC_BERT),该方法利用BERT获取句子特 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向中文新闻文本分类的融合网络模型
摘要针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于用户与产品信息和图卷积网络的情感分类研究
摘要在评论情感分析的研究中,和评论相关的用户与产品信息对于提高情感分类的准确率有很大的帮助。为了能够有效地利用产品和用户信息,并构建产品和用户信息与评论之间的关联,该文提出一种基于图网络的模型,将产品与用户信息和评论之间的关系构建为一个图,并基于图卷积网络模型学习产品与用户信息对评论的影响,从而提升 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于深度学习的中文短语复述抽取技术研究
摘要复述抽取是自然语言处理任务中的一个重要分支,高质量的复述资源对于提升信息检索、问答系统、机器翻译等任务的效果有很大帮助。该文将任务限定在中文短语复述抽取,提出了基于2BiLSTM+CNN+CRF的序列标注模型,用于单语中文语料短语划分,通过若干过滤规则获取优质中文短语。之后又提出了基于表示学习的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02中文词汇增长研究
摘要词汇增长研究能够分析文本的TTR在不同时期的变化,该文选取1954—2018年的中国政府工作报告为语料,分析文本中词例与词种的曲线变化,挖掘政府工作报告中的词汇丰富度与政策的相互关系。该文首先对语料进行了分词,然后根据曲线拟合效果选择拟合更好的Heaps模型进行预测。以中国的“五年计划”作为基础 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于门控空洞卷积的高效中文命名实体识别方法
摘要近年来,基于RNN的模型架构在命名实体识别任务中被广泛采用,但其循环特性导致GPU的并行计算能力无法被充分利用。普通一维卷积虽可以并行处理输入文本,显著缩短模型训练时长,但处理长文本时往往需要堆叠多个卷积层,进而增加梯度消失的风险。针对以上问题,该文采用可通过参数调节感受野范围的空洞卷积,并引入 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于Transformer网络的中文单字词检错方法研究
摘要错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于篇章主题的中文宏观篇章主次关系识别方法
摘要篇章分析是自然语言处理领域研究的热点和重点。作为篇章分析的任务之一,篇章主次关系研究篇章的主要和次要内容,从而更好地理解和把握篇章的核心内容。该文重点研究宏观领域的中文篇章主次关系,提出了一种基于篇章主题的中文宏观篇章主次关系识别方法。该方法利用篇章单元间、篇章单元与篇章主题间的语义交互来识别主 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02部首感知的中文医疗命名实体识别
摘要人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一个面向中文古诗词理解难易度的人工标注数据集
摘要向读者推荐阅读难度合适的古诗词有助于提升读者的诗词鉴赏能力。现阶段,围绕古诗词可读性自动化分析的相关研究的突出局限之一是缺乏大规模高质量的数据集。针对该问题,该文研究面向古诗词可读性自动化分析的数据集构建。该文作者对外开放了包含1915篇古诗词的标注阅读理解难度的数据集①。该文首先将数据集划分成 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02