删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

面向中文新闻文本分类的融合网络模型

本站小编 Free考研考试/2022-01-02

摘要针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度,同时保留其主要特征,并采用自注意力机制获取文本中更关键的特征信息,最后将所学习到的文本表示拼接后通过分类器对文本进行分类。实验结果表明: 所提出的融合模型在中文新闻长文本分类数据集NLPCC2014上进行实验,其精度、召回率、F1-score指标均优于最新模型AC-BiLSTM。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3106
相关话题/实验 信息 新闻 数据 中文

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于用户与产品信息和图卷积网络的情感分类研究
    摘要在评论情感分析的研究中,和评论相关的用户与产品信息对于提高情感分类的准确率有很大的帮助。为了能够有效地利用产品和用户信息,并构建产品和用户信息与评论之间的关联,该文提出一种基于图网络的模型,将产品与用户信息和评论之间的关系构建为一个图,并基于图卷积网络模型学习产品与用户信息对评论的影响,从而提升 ...
    本站小编 Free考研考试 2022-01-02
  • 基于深度学习的中文短语复述抽取技术研究
    摘要复述抽取是自然语言处理任务中的一个重要分支,高质量的复述资源对于提升信息检索、问答系统、机器翻译等任务的效果有很大帮助。该文将任务限定在中文短语复述抽取,提出了基于2BiLSTM+CNN+CRF的序列标注模型,用于单语中文语料短语划分,通过若干过滤规则获取优质中文短语。之后又提出了基于表示学习的 ...
    本站小编 Free考研考试 2022-01-02
  • 基于神经自回归分布估计的涉案新闻主题模型构建方法
    摘要神经主题模型能有效获取文本的深层语义特征,但现有的神经主题模型忽略了外部知识对获取主题分布的帮助。因此,针对涉案主题分析任务,该文提出了一种基于神经自回归分布估计的涉案新闻主题模型构建方法。以案件要素作为外部知识对iDocNADEe模型进行了扩展,通过计算案件要素与主题词的相关度来构建注意力机制 ...
    本站小编 Free考研考试 2022-01-02
  • 中文词汇增长研究
    摘要词汇增长研究能够分析文本的TTR在不同时期的变化,该文选取1954—2018年的中国政府工作报告为语料,分析文本中词例与词种的曲线变化,挖掘政府工作报告中的词汇丰富度与政策的相互关系。该文首先对语料进行了分词,然后根据曲线拟合效果选择拟合更好的Heaps模型进行预测。以中国的“五年计划”作为基础 ...
    本站小编 Free考研考试 2022-01-02
  • 一种基于门控空洞卷积的高效中文命名实体识别方法
    摘要近年来,基于RNN的模型架构在命名实体识别任务中被广泛采用,但其循环特性导致GPU的并行计算能力无法被充分利用。普通一维卷积虽可以并行处理输入文本,显著缩短模型训练时长,但处理长文本时往往需要堆叠多个卷积层,进而增加梯度消失的风险。针对以上问题,该文采用可通过参数调节感受野范围的空洞卷积,并引入 ...
    本站小编 Free考研考试 2022-01-02
  • 基于命名实体敏感的分层新闻故事线生成方法
    摘要社会网络中海量、无序且碎片化的新闻数据,使得人们无法从细粒度感知新闻事件,更无法多视角把握事件发展脉络。为了解决这个问题,该文提出基于命名实体敏感的分层新闻故事线生成方法,在无监督的情况下,充分利用新闻信息构造层次化、多视点的事件脉络。该方法主要通过以下3个步骤实现:①基于事件主题信息与隐式语义 ...
    本站小编 Free考研考试 2022-01-02
  • 基于Transformer网络的中文单字词检错方法研究
    摘要错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分 ...
    本站小编 Free考研考试 2022-01-02
  • 基于篇章主题的中文宏观篇章主次关系识别方法
    摘要篇章分析是自然语言处理领域研究的热点和重点。作为篇章分析的任务之一,篇章主次关系研究篇章的主要和次要内容,从而更好地理解和把握篇章的核心内容。该文重点研究宏观领域的中文篇章主次关系,提出了一种基于篇章主题的中文宏观篇章主次关系识别方法。该方法利用篇章单元间、篇章单元与篇章主题间的语义交互来识别主 ...
    本站小编 Free考研考试 2022-01-02
  • 部首感知的中文医疗命名实体识别
    摘要人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移 ...
    本站小编 Free考研考试 2022-01-02
  • 一个面向中文古诗词理解难易度的人工标注数据集
    摘要向读者推荐阅读难度合适的古诗词有助于提升读者的诗词鉴赏能力。现阶段,围绕古诗词可读性自动化分析的相关研究的突出局限之一是缺乏大规模高质量的数据集。针对该问题,该文研究面向古诗词可读性自动化分析的数据集构建。该文作者对外开放了包含1915篇古诗词的标注阅读理解难度的数据集①。该文首先将数据集划分成 ...
    本站小编 Free考研考试 2022-01-02