摘要传统词向量训练模型仅考虑词共现而未考虑词序,语义表达能力弱。此外,现有实体消歧方法没有考虑实体的局部特征。综合实体的全局特征和局部特征,该文提出一种基于上下文词向量和主题模型的实体消歧方法。首先,在传统词向量模型上增加上下文方向向量,用于表征语序,并利用该模型与主题模型训练主题词向量;其次,分别计算实体上下文相似度、基于实体上下文主题的类别主题相似度以及基于主题词向量的实体主题相似度;最后,融合三种相似度,选择相似度最高的实体作为最终消歧实体。实验结果表明,相比于现有的主流消歧方法,新方法是有效的。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2860
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于上下文词向量和主题模型的实体消歧方法
本站小编 Free考研考试/2022-01-02
相关话题/综合 实验 计算 实体 向量
融合字词模型的中文命名实体识别研究
摘要命名实体识别(NER)是自然语言处理中一项非常重要的基础任务。传统的机器学习方法在处理该任务时,主要依赖于人们的专业领域知识和人工提取的特征。为了在不需要人工特征的条件下获得较好的结果,该文提出了一种融合字词BiLSTM模型的命名实体识别方法。首先分别用BiLSTM-CRF训练得到基于字的模型C ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向知识库问答的实体链接方法
摘要面向知识库问答的实体链接是指将自然语言问句中实体指称链接到知识库中实体的方法。目前主要面临两个问题:第一是自然语言问句短,实体指称上下文不充分;第二是结构化知识库中实体的文本描述信息少。因此,该文提出了分别利用候选实体的类别、关系和邻近实体作为候选实体表示的方法,弥补知识库实体描述信息不足的问题 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多特征自注意力BLSTM的中文实体关系抽取
摘要实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02图像标题生成中的人物类名实体填充方法研究
摘要得益于深度学习的发展和大规模图像标注数据集的出现,图像标题生成作为一种结合了计算机视觉和自然语言处理的综合任务得到了广泛关注。受到神经机器翻译任务的启发,前人将图像标题生成任务看作是一种特殊的翻译任务,即将一张图像视作源端的信息表述,通过编码解码过程,翻译为目标端的自然语言语句。因此,现有研究引 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于循环实体网络的细粒度情感分析
摘要目前,深度神经网络模型已经在文本情感分析领域取得了较好的效果,但是对于属性相关的细粒度的情感分析任务,现有研究方法的效果仍有待改进。该文提出了一种基于循环实体网络来进行细粒度情感分析的方法,在网络中嵌入预定义的评价属性类别信息,利用扩大的内部记忆链来抽取与每个属性类别相关的情感特征,并通过动态记 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于混合神经网络的实体和事件联合抽取方法
摘要实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多任务学习的生物医学实体关系抽取
摘要生物医学实体关系抽取是生物医学文本挖掘领域的一项重要任务,它可以自动从生物医学文本中挖掘实体间的相互关系。目前,生物医学实体关系抽取方法一般只针对某一特定任务(如药物关系,蛋白质交互关系抽取等)训练单任务模型进行抽取,忽略了多个任务之间的相关性。因此,该文使用基于神经网络的多任务学习方法对多个生 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02藏文词向量相似度和相关性评测集构建
摘要词向量评测是词向量研究的基础,包括内部评测(intrinsicevaluation)和外部评测(extrinsicevaluations)。外部评测是将得到的词向量应用到具体某个任务中进行评测,是词向量研究的目标。内部评测是通过建立词之间的语义相似度或相关性能力的评测集,评价词向量模型的性能,是 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02探究复述策略对获取实体属性槽“源信息”的意义
摘要实体属性槽填充是一种抽取命名实体特定属性(slot)实例(也称槽值,即filler)的自然语言处理研究。其中,“源信息”特指属性实例的来源,即一段或一句佐证实例正确反映属性的文本片断。观测语料可以发现,实体属性源信息中存在大量同质异构现象,即复述现象。因此,该文结合复述技术与现有知识库,探究了复 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于轨迹时空词向量的用户年龄特征识别
摘要用户移动上网访问基站的轨迹数据从时间和空间上反映了用户的生活习惯和行为模式。时间和空间信息同时产生不应分别考虑。因此,该文在传统的TF-IDF方法基础上提出了与时间相关的TFT-IDFT方法,用以提取轨迹点语义信息,进而采用word2vec方法将轨迹数据转化为文档分析。提取包含位置信息和语义信息 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02