摘要:近年来,微服务架构已经成为软件工程领域比较流行的架构风格,其天然支持DevOps和持续交付以及可伸缩性、可扩展性好等特性,驱动着业界实践者纷纷向微服务架构迁移.然而,采用微服务架构也面临诸多挑战,其中最关键的是缺乏自动化、一体化的解决方案来高效支持面向微服务的拆分设计以及候选微服务架构的评估.为了应对该挑战,对已有的数据流驱动的微服务化拆分方法的局限问题(例如效率和灵活性)进行改进,在此基础上,提出了一种优化的微服务化拆分方法(DFD-A).该方法通过动、静态分析相结合的方式,实现了更加高效的数据流信息自动化收集,同时,采用两阶段的聚类算法来取代完全基于自定义规则的微服务化拆分算法.同时实现了原型工具来支持从数据收集分析、服务拆分到候选微服务架构评估的完整且自动化的过程.案例研究结果表明,该优化方法DFD-A及其原型工具在保证拆分结果有效性的基础上,可以更加高效、灵活地支持面向微服务的自动化拆分与评估.
Abstract:In recent years, microservices architecture (MSA) has become a prevalent architectural style in the field of software engineering. The natural characteristics of MSA, e.g., supporting DevOps andcontinuous delivery, scalability and extensibility, motivate practitioners to migrate their legacy systems to this new architectural style. However, the migration to MSA also causes many challenges, among which the most critical one is lacking an automated and integrated solution for the microservices-oriented decomposition and the evaluation of candidate microservices. To address this challenge, an optimized approach (DFD-A) is proposed through overcoming two limitations of an existing data flow-driven decomposition solution (DFD), i.e. efficiency and flexibility. The proposed DFD-A approach realizes the automatic data flow information collection through combining the dynamic and static analysis technology and identifies microservices using a more flexible two-phase clustering algorithm. A prototype tool is also implemented to automatically support the whole process of the data collection, the decomposition, and even the evaluation of microservice candidates using some typical metrics. The results of a case study demonstrate the effectiveness, efficiency, and flexibility of the proposed DFD-A method for microservices-oriented decomposition and evaluation.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6233
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
一种优化的数据流驱动的微服务化拆分方法
本站小编 Free考研考试/2022-01-02
相关话题/自动化 优化 设计 过程 数据
一种监控系统的链路跟踪型日志数据的存储设计
摘要:随着软件系统越来越复杂化和分布化,为系统提供具有完善功能的监控服务显得越来越重要.APM(applicationperformancemanagement)系统通过采集软件系统运行时的各项指标数据来分析软件的运行状态,例如CPU、内存使用率、垃圾回收的耗时、QPS等指标.此外,APM系统也会在 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于完全有限前缀展开的行为等价过程树生成算法
摘要:过程树能够兼具过程模型的行为和结构,在简化模型结构的复杂度方面具有重要意义.现有过程树转化仅能将基于块结构的简单过程模型转化为过程树,无法将具有复杂结构的过程模型转化过程树.为此,提出了一种基于完全有限前缀展开的行为等价过程树生成算法,用于将与过程树行为等价的过程模型转化为行为等价过程树.该方 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02时空轨迹数据驱动的自动驾驶场景元建模方法
摘要:时空轨迹数据驱动的汽车自动驾驶场景建模,是当前汽车自动驾驶领域中驾驶场景建模、仿真所面临的关键问题,对于提高系统的安全性具有重要的研究意义.近年来,随着时空轨迹数据建模及应用研究的快速发展,时空轨迹数据应用于特定领域建模的研究引起人们的广泛关注.但是,由于时空轨迹数据所反映的现实世界的多元性和 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02区块链赋能的高效物联网数据激励共享方案
摘要:近年来,随着大量设备不断地加入物联网中,数据共享作为物联网市场的主要驱动因素成为了研究热点.然而,当前的物联网数据共享存在着出于安全顾虑和缺乏激励机制等原因导致用户不愿意参与共享数据的问题.在此背景下,区块链技术为解决用户的信任问题和提供安全的数据存储被引入到物联网数据共享中.然而,在构建基于 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02支撑机器学习的数据管理技术综述
摘要:应用驱动创新,数据库技术就是在支持主流应用的提质降本增效中发展起来的.从OLTP、OLAP到今天的在线机器学习建模无不如此.机器学习是当前人工智能技术落地的主要途径,通过对数据进行建模而提取知识、实现预测分析.从数据管理的视角对机器学习训练过程进行解构和建模,从数据选择、数据存储、数据存取、自 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02支撑人工智能的数据管理与分析技术专刊前言
摘要:近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02图嵌入算法的分布式优化与实现
摘要:随着人工智能时代的到来,图嵌入技术被越来越多地用来挖掘图中的信息.然而,现实生活中的图通常很大,因此,分布式图嵌入技术得到了广泛的关注.分布式图嵌入算法面临着两大难点:(1)图嵌入算法多种多样,没有一个通用的框架能够描述大部分的算法;(2)现在的分布式图嵌入算法扩展性不足,当处理大图时性能较低 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据库内AI模型优化
摘要:在大量变化着的数据中,数据分析师常常只关心预测结果为特定值的少量数据.然而,利用机器学习模型进行推理的工作流程中,由于机器学习算法库默认数据以单表方式组织,用户必须先通过SQL语句查询出全部数据,即使随后在模型推理过程中会将大量数据丢弃.指出了在这个过程中,如果可以预先从模型中提取信息,就有望 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向企业数据孤岛的联邦排序学习
摘要:排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可行.各企业之间数据被迫独立存储,形成了数据孤岛.由 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02多区间速度约束下的时序数据清洗方法
摘要:为进一步优化推广大数据及人工智能技术,作为数据管理与分析的基础,数据质量问题日益成为相关领域的研究热点.通常情况下,数据采集及记录仪的物理故障或技术缺陷等会导致收集到的数据存在一定的错误,而异常错误会对后续的数据分析以及人工智能过程产生不可小视的影响,因此在数据应用之前,需要对数据进行相应的数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02