删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

区块链赋能的高效物联网数据激励共享方案

本站小编 Free考研考试/2022-01-02

摘要:近年来,随着大量设备不断地加入物联网中,数据共享作为物联网市场的主要驱动因素成为了研究热点.然而,当前的物联网数据共享存在着出于安全顾虑和缺乏激励机制等原因导致用户不愿意参与共享数据的问题.在此背景下,区块链技术为解决用户的信任问题和提供安全的数据存储被引入到物联网数据共享中.然而,在构建基于区块链的安全分布式数据共享系统的探索过程中,如何突破区块链固有的性能瓶颈仍然是一个关键挑战.为此,研究了基于区块链的高效物联网数据激励共享方案.该方案首先提出了一个高效的区块链物联网数据激励共享框架,称为ShareBC.ShareBC利用分片技术构建能够并行处理数据共享交易的异步共识区,并在云/边缘服务器上和分片异步共识区上部署高效的共识机制,从而提高数据共享交易的处理效率.然后,为激励物联网用户参与数据共享,提出了一种基于智能合约实现的层次数据拍卖模型的共享激励机制.该机制解决了物联网数据共享中涉及的多层数据分配有效性问题,能够最大限度地提高整体社会福利.最后,实验结果表明了该方案的经济效益、激励兼容性和实时性以及可扩展性,且具有较低的计算成本和良好的实用性.



Abstract:In recent years, with a large number of devices that continuously join the IoT, data sharing as the main driver of the IoT market has become a research hotspot. However, the users are reluctant to participate in data sharing due to the security concerns and lacking of incentive mechanism in current IoT. In this context, blockchain is introduced into the data sharing of IoT to solve the trust problem of users and provide secure data storage. However, in the exploration of building a secure distributed data sharing system based on the blockchain, how to break the inherent performance bottleneck of blockchain is still a major challenge. For this reason, the efficient blockchain-based data sharing incentive scheme is studied for IoT, in which an efficient data incentive sharing framework based on blockchain is proposed, named ShareBC. Firstly, ShareBC uses sharding technology to build asynchronous consensus zones that can process data sharing transactions in parallel and deploy efficient consensus mechanisms on the cloud/edge servers and asynchronous consensus zones in sharding, thus improving the processing efficiency of data sharing transactions. Then, in order to encourage IoT users to participate in data sharing, a sharing incentive mechanism based on hierarchical data auction model implemented by smart contract is presented. The proposed mechanism can effectively solve the problem of multi-layer data allocation involved in IoT data sharing, and maximize the overall social welfare. Finally, the experimental results show that the proposed scheme is economically efficient, incentive-compatible, real-time, and scalability, and has low cost and good practicability.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6229
相关话题/数据 物联网 方案 技术 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 时空轨迹数据驱动的自动驾驶场景元建模方法
    摘要:时空轨迹数据驱动的汽车自动驾驶场景建模,是当前汽车自动驾驶领域中驾驶场景建模、仿真所面临的关键问题,对于提高系统的安全性具有重要的研究意义.近年来,随着时空轨迹数据建模及应用研究的快速发展,时空轨迹数据应用于特定领域建模的研究引起人们的广泛关注.但是,由于时空轨迹数据所反映的现实世界的多元性和 ...
    本站小编 Free考研考试 2022-01-02
  • 基于偶然正确性概率的错误定位技术
    摘要:基于代码覆盖的错误定位技术是一种常用的错误定位方法,被用来识别与故障相关的程序元素.然而,有研究工作表明,基于代码覆盖的错误定位技术的有效性受到了偶然正确性现象的影响.偶然正确性现象是指程序中包含的错误被执行,但没有产生错误结果的情况,它在实际场景中是非常普遍的.根据以往的研究工作,提出了一种 ...
    本站小编 Free考研考试 2022-01-02
  • 椭圆曲线同源的有效计算研究进展
    摘要:由于Shor算法可以在多项式时间内解决大整数分解以及离散对数问题,使得基于这些问题设计的经典的密码体制不再安全.目前涌现出许多后量子密码体制的研究,如基于格、基于编码、基于多变量和基于椭圆曲线同源的密码系统.相比于其他后量子密码体制,基于椭圆曲线同源的密码系统具有密钥尺寸短的优势,然而其实现效 ...
    本站小编 Free考研考试 2022-01-02
  • 支撑机器学习的数据管理技术综述
    摘要:应用驱动创新,数据库技术就是在支持主流应用的提质降本增效中发展起来的.从OLTP、OLAP到今天的在线机器学习建模无不如此.机器学习是当前人工智能技术落地的主要途径,通过对数据进行建模而提取知识、实现预测分析.从数据管理的视角对机器学习训练过程进行解构和建模,从数据选择、数据存储、数据存取、自 ...
    本站小编 Free考研考试 2022-01-02
  • 支撑人工智能的数据管理与分析技术专刊前言
    摘要:近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中, ...
    本站小编 Free考研考试 2022-01-02
  • 数据库内AI模型优化
    摘要:在大量变化着的数据中,数据分析师常常只关心预测结果为特定值的少量数据.然而,利用机器学习模型进行推理的工作流程中,由于机器学习算法库默认数据以单表方式组织,用户必须先通过SQL语句查询出全部数据,即使随后在模型推理过程中会将大量数据丢弃.指出了在这个过程中,如果可以预先从模型中提取信息,就有望 ...
    本站小编 Free考研考试 2022-01-02
  • 面向企业数据孤岛的联邦排序学习
    摘要:排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可行.各企业之间数据被迫独立存储,形成了数据孤岛.由 ...
    本站小编 Free考研考试 2022-01-02
  • 多区间速度约束下的时序数据清洗方法
    摘要:为进一步优化推广大数据及人工智能技术,作为数据管理与分析的基础,数据质量问题日益成为相关领域的研究热点.通常情况下,数据采集及记录仪的物理故障或技术缺陷等会导致收集到的数据存在一定的错误,而异常错误会对后续的数据分析以及人工智能过程产生不可小视的影响,因此在数据应用之前,需要对数据进行相应的数 ...
    本站小编 Free考研考试 2022-01-02
  • KGDB:统一模型和语言的知识图谱数据库管理系统
    摘要:知识图谱是人工智能的重要基石,其目前主要有RDF图和属性图两种数据模型,在这两种数据模型之上有数种查询语言.RDF图上的查询语言为SPARQL,属性图上的查询语言主要为Cypher.10年来,各个社区开发了分别针对RDF图和属性图的不同数据管理方法,不统一的数据模型和查询语言限制了知识图谱的更 ...
    本站小编 Free考研考试 2022-01-02
  • PandaDB:一种异构数据智能融合管理系统
    摘要:随着大数据应用的不断深入,对大规模结构化/非结构化数据进行融合管理和分析的需求日益凸显.然而,结构化/非结构化数据在存储管理方式、信息获取方式、检索方式方面的差异给融合管理和分析带来了技术挑战.提出了适用于异构数据融合管理和语义计算的属性图扩展模型,并定义了相关属性操作符和查询语法.接着,基于 ...
    本站小编 Free考研考试 2022-01-02