删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小样本学习研究综述

本站小编 Free考研考试/2022-01-02

摘要:小样本学习旨在通过少量样本学习到解决问题的模型.近年来,在大数据训练模型的趋势下,机器学习和深度学习在许多领域中取得了成功.但是在现实世界中的很多应用场景中,样本量很少或者标注样本很少,而对大量无标签样本进行标注工作将会耗费很大的人力.所以,如何用少量样本进行学习就成为目前人们需要关注的问题.系统地梳理了当前小样本学习的相关工作,具体来说介绍了基于模型微调、基于数据增强和基于迁移学习这3大类小样本学习模型与算法的研究进展;将基于数据增强的方法细分为基于无标签数据、基于数据合成和基于特征增强这3类,将基于迁移学习的方法细分为基于度量学习、基于元学习和基于图神经网络这3类;总结了目前常用的小样本数据集和代表性的小样本学习模型在这些数据集上的实验结果;随后对小样本学习的现状和挑战进行了概述;最后展望了小样本学习的未来发展方向.



Abstract:Few-shot learning is defined as learning models to solve problems from small samples. In recent years, under the trend of training model with big data, machine learning and deep learning have achieved success in many fields. However, in many application scenarios in the real world, there is not a large amount of data or labeled data for model training, and labeling a large number of unlabeled samples will cost a lot of manpower. Therefore, how to use a small number of samples for learning has become a problem that needs to be paid attention to at present. This paper systematically combs the current approaches of few-shot learning. It introduces each kind of corresponding model from the three categories: fine-tune based, data augmentation based, and transfer learning based. Then, the data augmentation based approaches are subdivided into unlabeled data based, data generation based, and feature augmentation based approaches. The transfer learning based approaches are subdivided into metric learning based, meta-learning based, and graph neural network based methods. In the following, the paper summarizes the few-shot datasets and the results in the experiments of the aforementioned models. Next, the paper summarizes the current situation and challenges in few-shot learning. Finally, the future technological development of few-shot learning is prospected.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6138
相关话题/数据 工作 系统 介绍 实验

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于事件社会网络推荐系统综述
    摘要:基于事件社会网络(event-basedsocialnetwork,简称EBSN)是一种结合了线上网络和线下网络的新型社会网络,近年来得到了越来越多的关注,已有许多国内外重要研究机构的研究者对其进行研究并取得了许多研究成果.在EBSN推荐系统中,一个重要的任务就是设计出更好、更合理的推荐算法以 ...
    本站小编 Free考研考试 2022-01-02
  • 面向AI的数据管理技术综述
    摘要:人工智能技术因其强大的学习和泛化能力已被广泛应用于各种真实场景中.然而,现有的人工智能技术仍然面临着三大挑战:第一,现有的AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有的AI算法训练效率低,造成了大量计算资源的浪费,甚至延 ...
    本站小编 Free考研考试 2022-01-02
  • 面向时序图数据的快速环枚举算法
    摘要:时序图数据是一类边上带有时间戳信息的图数据.在时序图数据中,时序环是边满足时间戳递增约束的回路.时序环枚举在现实中有着很多应用,它可以帮助挖掘金融网络中的欺诈行为.此外,研究时序环的数量对于刻画不同时序图的特性也有重要作用.基于2018年由RohitKumar等人提出的时序环枚举算法(2SCE ...
    本站小编 Free考研考试 2022-01-02
  • 软件需求变更管理的系统动力学仿真建模
    摘要:软件需求变更频繁发生,给软件项目造成了诸多威胁.能否对需求变更进行有效的控制管理,决定着软件的成败.使用系统动力学方法对软件需求变更管理过程进行仿真建模,可以动态地分析并预测需求变更产生的原因以及变更对软件项目造成的影响;对软件需求变更管理过程改进进行系统动力学仿真,亦可以辅助软件项目组织选择 ...
    本站小编 Free考研考试 2022-01-02
  • 数据驱动的移动应用用户接受度建模与预测
    摘要:应用市场(appmarket)已经成为互联网环境下软件应用开发和交付的一种主流模式.相对于传统模式,应用市场模式下,软件的交付周期更短,用户的反馈更快,最终用户和开发者之间的联系更加紧密和直接.为应对激烈的竞争和动态演变的用户需求,移动应用开发者必须以快速迭代的方式不断更新应用,修复错误缺陷, ...
    本站小编 Free考研考试 2022-01-02
  • 函数级数据依赖图及其在静态脆弱性分析中的应用
    摘要:数据流分析是二进制程序分析的重要手段,但传统数据依赖图(DDG)构建的时间与空间复杂度较高,限制了可分析代码的规模.提出了函数级数据依赖图(FDDG)的概念,并设计了函数级数据依赖图的构建方法.在考虑函数参数及参数间相互依赖关系的基础上,将函数作为整体分析,忽略函数内部的具体实现,显著缩小了数 ...
    本站小编 Free考研考试 2022-01-02
  • 场景驱动且自底向上的单体系统微服务拆分方法
    摘要:作为云原生应用的一种典型形态,微服务架构已经在各种企业应用系统中被广泛使用.在企业实践中,许多微服务都是在单体架构的遗留系统基础上通过微服务拆分和改造形成的,其中的拆分决策(特别是数据库拆分)对于微服务系统的质量有着很大的影响.目前,单体系统的微服务拆分决策主要依赖于人的主观经验,整个过程成本 ...
    本站小编 Free考研考试 2022-01-02
  • 类属型数据核子空间聚类算法
    摘要:现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并 ...
    本站小编 Free考研考试 2022-01-02
  • 基于采样的在线大图数据收集和更新
    摘要:互联网中,以网页、社交媒体和知识库等为载体呈现的大量非结构化数据可表示为在线大图.在线大图数据的获取包括数据收集和更新,是大数据分析与知识工程的重要基础,但面临着数据量大、分布广、异构和变化快速等挑战.基于采样技术,提出并行、自适应的在线大图数据收集和更新方法.首先,将分支限界方法与半蒙特卡罗 ...
    本站小编 Free考研考试 2022-01-02
  • 基于训练空间重构的多模块TSK模糊系统
    摘要:利用重构训练样本空间的手段,提出一种多训练模块Takagi-Sugeno-Kang(TSK)模糊分类器H-TSK-FS.它具有良好的分类性能和较高的可解释性,可以解决现有层次模糊分类器中间层输出和模糊规则难以解释的难题.为了实现良好的分类性能,H-TSK-FS由多个优化零阶TSK模糊分类器组成 ...
    本站小编 Free考研考试 2022-01-02