摘要:利用重构训练样本空间的手段,提出一种多训练模块Takagi-Sugeno-Kang (TSK)模糊分类器H-TSK-FS.它具有良好的分类性能和较高的可解释性,可以解决现有层次模糊分类器中间层输出和模糊规则难以解释的难题.为了实现良好的分类性能,H-TSK-FS由多个优化零阶TSK模糊分类器组成.这些零阶TSK模糊分类器内部采用一种巧妙的训练方式.原始训练样本、上一层训练样本中的部分样本点以及所有已训练层中最逼近真实值的部分决策信息均被投影到当前层训练模块中,并构成其输入空间.通过这种训练方式,前层的训练结果对后层的训练起到引导和控制作用.这种随机选取样本点、在一定范围内随机选取训练特征的手段可以打开原始输入空间的流形结构,保证较好或相当的分类性能.另外,该研究主要针对少量样本点且训练特征数不是很大的数据集.在设计每个训练模块时采用极限学习机获取模糊规则后件参数.对于每个中间训练层,采用短规则表达知识.每条模糊规则则通过约束方式确定不固定的输入特征以及高斯隶属函数,目的是保证所选输入特征具有高可解释性.真实数据集和应用案例实验结果表明,H-TSK-FS具有良好的分类性能和高可解释性.
Abstract:A multi-training module Takagi-Sugeno-Kang (TSK) fuzzy classifier, H-TSK-FS, is proposed by means of reconstruction of training sample space. H-TSK-FS has good classification performance and high interpretability, which can solve the problems of existing hierarchical fuzzy classifiers such as the output and fuzzy rules of intermediate layer that are difficult to explain. In order to achieve enhanced classification performance, H-TSK-FS is composed of several optimized zero-order TSK fuzzy classifiers. These zero-order TSK fuzzy classifiers adopt an ingenious training method. The original training sample, part of the sample of the previous layer and part of the decision information that most approximates the real value in all the training layers are projected into the training module of the current layer and constitute its input space. In this way, the training results of the previous layers play a guiding and controlling role in the training of the current layer. This method of randomly selecting sample points and training features within a certain range can open up the manifold structure of the original input space and ensure better or equivalent classification performance. In addition, this study focuses on data sets with a small number of sample points and a small number of training features. In the design of each training unit, extreme learning machine is used to obtain the Then-part parameters of fuzzy rules. For each intermediate training layer, short rules are used to express knowledge. Each fuzzy rule determines the variable input features and Gaussian membership function by means of constraints, in order to ensure that the selected input features are highly interpretable. Experimental results of real datasets and application cases show that H-TSK-FS enhances classification performance and high interpretability.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5846
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于训练空间重构的多模块TSK模糊系统
本站小编 Free考研考试/2022-01-02
相关话题/空间 数据 实验 知识 设计
基于采样的在线大图数据收集和更新
摘要:互联网中,以网页、社交媒体和知识库等为载体呈现的大量非结构化数据可表示为在线大图.在线大图数据的获取包括数据收集和更新,是大数据分析与知识工程的重要基础,但面临着数据量大、分布广、异构和变化快速等挑战.基于采样技术,提出并行、自适应的在线大图数据收集和更新方法.首先,将分支限界方法与半蒙特卡罗 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02分级可逆的关系数据水印方案
摘要:关系数据可逆水印技术是保护数据版权的方法之一.它克服了传统的关系数据数字水印技术的缺点,不仅可以声明版权,而且可以恢复原始数据.现有方法在恢复原始数据时不能控制数据恢复的程度,无法调节数据的可用性.提出了一种分级可逆的关系数据水印方案,定义了数据质量等级来反映水印嵌入对数据可用性的影响,设计了 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02FPGA加速系统开发工具设计:综述与实践
摘要:近年来,现场可编程逻辑门阵列(FPGA)在异构计算领域因其优异的可定制性和可重配置特点吸引了工业界和学术界的广泛关注.基于FPGA的硬件加速系统设计涉及到深度的软硬件协同开发,利用软硬件各自开发工具分别开发再集成的传统开发方式具有学习门槛高,集成、测试、部署耗时长等缺陷,开发人员难以利用FPG ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于领域语义知识库的疾病辅助诊断方法
摘要:健康医疗领域是一个知识密集型的领域,临床诊断的质量主要依赖于医生所掌握的健康医疗知识以及临床经验.然而,单个医生的能力仍然非常有限,所以目前临床诊断的质量并不高.为此,提出一种基于领域语义知识库的疾病辅助诊断方法,基于Freebase中medicine主题域的知识建立了领域语义知识库,提出计算 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02支持OR语义的高效受限Top-k空间关键字查询技术
摘要:近些年,随着定位系统和移动设备的普及,空间文本对象的数量日益庞大,基于位置的地理信息服务在人们的生活中发挥着越来越重要的作用.对于空间关键字查询搜索的研究亦如火如荼.然而,现有许多研究工作只适用于AND语义,支持OR语义的搜索研究相对较少.当用户放松对关键字匹配的要求时,支持OR语义的搜索技术 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02距离约束的网格曲面曲线设计方法
摘要:针对现有网格曲面曲线设计方法鲁棒性差、收敛慢、适用范围窄等不足,提出一种基于距离约束的新方法.该方法将复杂的流形约束转化为距离约束,并与光滑、插值(逼近)约束共同描述成优化问题.求解时,用切平面逼近局部曲面,并将距离约束松弛成用点到切平面的距离.由于计算距离所用的曲线上的点与其对应的切点相互依 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于物理及数据驱动的流体动画研究
摘要:主要针对近年来流行的基于物理及数据驱动的各种流体动画模拟算法及其应用给出了一个全面的前沿性综述.首先,对传统的基于物理的流体模拟加速方法进行了综述和总结,同时给出了此类方法中各种算法的优劣性分析;其次,对现有的基于数据驱动的多种算法进行了综述和分析.特别地,将现有的数据驱动方法归结为3类,即数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02SDN数据平面软件一致性测试用例生成方法
摘要:SDN(software-definednetwork)旨在解决架构复杂且分散的传统网络出现的问题,使网络具有更强的灵活性.P4编程语言的特征在于用户可以直接根据自己对处理数据包的需求定义P4程序,然后经过编译过程,生成适配文件将用户需求配置到网络设备.面向P4编程语言的SDN数据平面一致性测 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02区块链的数据管理技术综述
摘要:最近几年,随着加密货币和去中心化应用的流行,区块链技术受到了各行业极大的关注.从数据管理的角度,区块链可以视作是在一个分布式环境下众多不可信节点共同维护且不可篡改的账本.由于节点间相互不可信,区块链通过共识协议,确保数据存储的一致性,实现去中心化的数据管理.针对区块链的安全性以及共识协议,已有 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于双层协同的联盟区块链隐私数据保护方法
摘要:为了解决联盟区块链平台中的隐私保护问题,提出了一种基于双层协同的隐私数据保护方法,包括:(1)链间隐私保护:通过将不同业务的数据进行分流处理、分区存储,实现了不同业务之间的隐私机密性保护;(2)链内隐私保护:通过在交易体中嵌入字段来指定链内隐私数据的参与方,并由接收交易的区块链节点作为中转节点 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02