摘要:关键字检索具有友好的用户操作体验,该检索方式已在文本信息检索领域得到了广泛而深入的应用.对XML数据采用关键字检索是目前研究的热点.基于查询语义的XML关键字检索方法存在返回大量与用户查询意图无关的查询片段或者丢失符合用户查询意图的片段这两个问题.针对这些问题,在考虑LCA横向和纵向两个维度的基础上,提出了用户查询意图与LCA相关性的两个规则,根据两个规则定义了LCA的边密度和路径密度,建立了综合的LCA节点评分公式,最后设计TopLCA-K算法对LCA进行排名,并利用中心位置索引CI提高了TopLCA-K算法的效率.实验结果显示,利用所提出的方法返回的查询节点更加符合用户需求.
Abstract:Keyword search has a friendly user experience; the method has been widely used in the field of text information retrieval. Keyword search on XML data is a hot research topic presently. The XML keyword search method based on query semantics have two problems:(1) a large number of query fragments which are not related to the user's query intention have been returned; (2) the fragments which are consistent with the user's query intention have been missed. Aiming at these problems, two rules of user query intention and LCA correlation are proposed on the basis of the two (horizontal and vertical) dimensions of LCA. The edge density and path density of LCA are defined according to the two rules, and a comprehensive scoring formula on LCA nodes is established, finally, the TopLCA-K algorithm is designed to rank LCA. To improve the efficiency of the algorithm, center location index is designed. Experimental results show that the nodes returned by this method are more in line with the needs of users.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5390
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于关键字密度的XML关键字检索
本站小编 Free考研考试/2022-01-02
相关话题/实验 排名 设计 综合 数据
分布式多数据流频繁伴随模式挖掘
摘要:多数据流频繁伴随模式是指一组对象较短时间内在同一个数据流上伴随出现,并在之后一段时间以同样方式出现在其他多个数据流上.现实生活中,城市交通监控系统中的伴随车辆发现、基于签到数据的伴随人群发现、基于社交网络数据中的高频伴随词组发现热点事件等应用都可以归结为多数据流频繁伴随模式发现问题.由于数据流 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02智能数据管理与分析技术专刊前言
摘要:数据管理与智能计算的深度融合已经成为大数据时代顺利前行的迫切需求.智能数据管理旨在“为数据增添智能”,是数据科学与技术的重要基石,更是大数据产业蓬勃发展的关键支撑.一方面,将新一代人工智能方法应用于先进数据管理技术,尝试探索和突破智能数据管理与分析的理论体系、技术方法及系统平台,已经成为数据管 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02大规模RDF图数据上高效率分布式查询处理
摘要:知识图谱是智能数据的主要表现形式,随着知识图谱领域的不断发展,大量的智能图数据以资源描述框架(resourcedescriptionframework,简称RDF)形式发布出来.RDF图上的SPARQL查询语义对应于图同态,是一个NP-完全问题.因此,如何使用分布式方法在大规模RDF图上有效回 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于时效规则的数据修复方法
摘要:数据时效性是影响数据质量的重要因素,可靠的数据时效性对数据检索的精确度、数据分析结论的可信性起到关键作用.数据时效不精确、数据过时等现象给大数据应用带来诸多问题,很大程度上影响着数据价值的发挥.对于缺失了时间戳或者时间不准确的数据,精确恢复其时间戳是困难的,但可以依据一定的规则对其时间先后顺序 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02劣质数据上代价敏感决策树的建立
摘要:代价敏感决策树是以最小化误分类代价和测试代价为目标的一种决策树.目前,随着数据量急剧增长,劣质数据的出现也愈发频繁.在建立代价敏感决策树时,训练数据集中的劣质数据会对分裂属性的选择和决策树结点的划分造成一定的影响.因此在进行分类任务前,需要提前对数据进行劣质数据清洗.然而在实际应用中,由于数据 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于网格耦合的数据流聚类
摘要:随着越来越多的应用程序产生数据流,数据流聚类分析的研究受到了广泛关注.基于网格的聚类通过将数据流映射到网格结构中形成数据概要,进而对概要进行聚类.这种方法通常具有较高的效率,但是每个网格独立处理,没有考虑网格之间的相互影响,因此聚类质量有待提高.在聚类过程中不再独立处理网格,而是考虑了网格之间 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02差分隐私的数据流关键模式挖掘方法
摘要:频繁模式挖掘是数据挖掘的重要任务之一,在数据流上挖掘简洁的关键模式比频繁模式更有优势,因为关键模式既可以避免频繁模式里包含的冗余信息以减少内存存储空间,又可以高效无损地提取频繁模式.但是由于相邻时间戳的统计信息可以作为背景知识增强攻击者的推理能力,所以从包含个人信息的数据流中挖掘关键模式比静态 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02分布式异构数据库数据同步工具
摘要:一般而言,读写分离技术可以解决当前大数据环境下的读写速度失配的部分问题,但是现有的读写分离技术主要是针对同构数据库的解决方案.由于存储结构的不一致,由行式存储数据库和列式存储数据库构成的异构分布式数据库系统相较于同构分布式数据库系统在数据同步的过程中就会面临格式转换、同步速度不匹配等诸多难题. ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一个支持错误定位的批处理数据拥有性证明方案
摘要:数据拥有性证明技术是当前云存储安全领域中的一大重要研究内容,目的是不必下载所有文件,就能安全而高效地远程校验存储在云服务器中的数据是否完整.目前已陆续提出了许多批处理数据拥有性证明方案,但大多数方案都没有考虑用户数据出错后的错误定位问题,仅有的几个批处理校验方案也只能单独定位错误数据所在服务器 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02大数据管理系统的历史、现状与未来
摘要:大数据管理技术正在经历以软件为中心到以数据为中心的计算平台的变迁,传统的关系型数据库管理系统无法满足现在以数据为中心的大数据管理的需求,设计新型大数据管理系统迫在眉睫.首先回顾了数据管理技术的发展历史;之后,从大数据管理的存储、数据模型、计算模式、查询引擎等方面分析了大数据管理系统的现状,指出 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02