摘要:数据时效性是影响数据质量的重要因素,可靠的数据时效性对数据检索的精确度、数据分析结论的可信性起到关键作用.数据时效不精确、数据过时等现象给大数据应用带来诸多问题,很大程度上影响着数据价值的发挥.对于缺失了时间戳或者时间不准确的数据,精确恢复其时间戳是困难的,但可以依据一定的规则对其时间先后顺序进行还原恢复,满足数据清洗及各类应用需求.在数据时效性应用需求分析的基础上,首先明确了属性的时效规则相关概念,对属性的时效规则等进行了形式化定义;然后提出了基于图模型的时效规则发现以及数据时序修复算法;随后,对相关算法进行了实现,并在真实数据集上对算法运行效率、修复正确率等进行了测试,分析了影响算法修复数据正确率的一些影响因素,对算法进行了较为全面的分析评价.实验结果表明,算法具有较高的执行效率和较好的时效修复效果.
Abstract:Data currency is an important factor influencing the data quality. The reliability of data currency plays a critical role in data retrieval accuracy and data analysis credibility. Inaccurate data currency and outdated data bring many problems to the application of big data, which greatly affects the exertion of data value. For data that with imprecise time attribute or missing timestamp, exact repair of timestamp is often difficult, but it is possible to restore the currency orders according to specific currency based rules to meet various requirements in data cleaning and applications. Based on the analysis of data currency application requirements, this study first introduces the related concepts of data currency, defines attributes currency-based rules in formal method, and then proposes the currency rules discovery algorithm and the currency repair method. The algorithms efficiency and recovery effect are tested on real dataset, the factors that affect accuracy of the algorithms are analyzed. Experimental results show that the proposed methods are efficient and effective.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5688
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于时效规则的数据修复方法
本站小编 Free考研考试/2022-01-02
相关话题/数据 实验 测试 质量 算法
劣质数据上代价敏感决策树的建立
摘要:代价敏感决策树是以最小化误分类代价和测试代价为目标的一种决策树.目前,随着数据量急剧增长,劣质数据的出现也愈发频繁.在建立代价敏感决策树时,训练数据集中的劣质数据会对分裂属性的选择和决策树结点的划分造成一定的影响.因此在进行分类任务前,需要提前对数据进行劣质数据清洗.然而在实际应用中,由于数据 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于网格耦合的数据流聚类
摘要:随着越来越多的应用程序产生数据流,数据流聚类分析的研究受到了广泛关注.基于网格的聚类通过将数据流映射到网格结构中形成数据概要,进而对概要进行聚类.这种方法通常具有较高的效率,但是每个网格独立处理,没有考虑网格之间的相互影响,因此聚类质量有待提高.在聚类过程中不再独立处理网格,而是考虑了网格之间 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02差分隐私的数据流关键模式挖掘方法
摘要:频繁模式挖掘是数据挖掘的重要任务之一,在数据流上挖掘简洁的关键模式比频繁模式更有优势,因为关键模式既可以避免频繁模式里包含的冗余信息以减少内存存储空间,又可以高效无损地提取频繁模式.但是由于相邻时间戳的统计信息可以作为背景知识增强攻击者的推理能力,所以从包含个人信息的数据流中挖掘关键模式比静态 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02分布式异构数据库数据同步工具
摘要:一般而言,读写分离技术可以解决当前大数据环境下的读写速度失配的部分问题,但是现有的读写分离技术主要是针对同构数据库的解决方案.由于存储结构的不一致,由行式存储数据库和列式存储数据库构成的异构分布式数据库系统相较于同构分布式数据库系统在数据同步的过程中就会面临格式转换、同步速度不匹配等诸多难题. ...中科院软件研究所 本站小编 Free考研考试 2022-01-02代表点一致性约束的多视角模糊聚类算法
摘要:多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该模型不仅考虑了视角内的划分质量,还兼顾了视角间的协同学习机制.对于视角内 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一个支持错误定位的批处理数据拥有性证明方案
摘要:数据拥有性证明技术是当前云存储安全领域中的一大重要研究内容,目的是不必下载所有文件,就能安全而高效地远程校验存储在云服务器中的数据是否完整.目前已陆续提出了许多批处理数据拥有性证明方案,但大多数方案都没有考虑用户数据出错后的错误定位问题,仅有的几个批处理校验方案也只能单独定位错误数据所在服务器 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种面向人脸活体检测的对抗样本生成算法
摘要:近年来,基于深度卷积神经网络的人脸活体检测技术取得了较好的性能.然而,深度神经网络被证明容易受到对抗样本的攻击,影响了人脸系统的安全性.为了建立更好的防范机制,需充分研究活体检测任务对抗样本的生成机理.相对于普通分类问题,活体检测任务具有类间距离小,且扰动操作难度大等特性.在此基础上,提出了基 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据模型及其发展历程
摘要:数据库是数据管理的技术,是计算机学科的重要分支.经过近半个世纪的发展,数据库技术形成了坚实的理论基础、成熟的商业产品和广泛的应用领域.数据模型描述了数据库中数据的存储方式和操作方式.从数据组织形式,可以将数据模型分为结构化模型、半结构化模型、OLAP分析模型和大数据模型.20世纪60年代中后期 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02大数据管理系统的历史、现状与未来
摘要:大数据管理技术正在经历以软件为中心到以数据为中心的计算平台的变迁,传统的关系型数据库管理系统无法满足现在以数据为中心的大数据管理的需求,设计新型大数据管理系统迫在眉睫.首先回顾了数据管理技术的发展历史;之后,从大数据管理的存储、数据模型、计算模式、查询引擎等方面分析了大数据管理系统的现状,指出 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02新型数据管理系统研究进展与趋势
摘要:随着各类新型计算技术和新兴应用领域的浮现,传统数据库技术面临新的挑战,正在从适用常规应用的单一处理方法逐步转为面向各类特殊应用的多种数据处理方式.分析并展望了新型数据管理系统的研究进展和趋势,涵盖分布式数据库、图数据库、流数据库、时空数据库和众包数据库等多个领域.具体而言:分布式数据管理技术是 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02