摘要:数据库是数据管理的技术,是计算机学科的重要分支.经过近半个世纪的发展,数据库技术形成了坚实的理论基础、成熟的商业产品和广泛的应用领域.数据模型描述了数据库中数据的存储方式和操作方式.从数据组织形式,可以将数据模型分为结构化模型、半结构化模型、OLAP分析模型和大数据模型.20世纪60年代中后期到90年代初,结构化模型最早被提出,其主要包括层次模型、网状模型、关系模型和面向对象模型等.20世纪90年代末期,随着互联网应用和科学计算等复杂应用的快速发展,开始出现半结构化模型,包括XML模型、JSON模型和图模型等.21世纪,随着电子商务、商业智能等应用的不断发展,数据分析模型成为研究热点,主要包括关系型ROLAP和多维型MOLAP.2010年以来,随着大数据工业应用的快速发展,以NoSQL和NewSQL数据库系统为代表的大数据模型成为新的研究热点.对上述数据模型进行了综述,并选取每个模型的典型数据库系统进行了性能的分析.
Abstract:Database management technology is an important branch of computer science. After the development of nearly half a century, database technology has formed a solid theoretical foundation, mature commercial products, and a wide range of applications. The data model describes the storage and operation of data in the database. According to the organizational form of data, there are four types of data models:structured models, semi-structured models, OLAP analysis models, and big data models. From the late 1960s to the early 1990s, the structured models were first proposed, which mainly includes hierarchical model, network model, relational model, and object-oriented model. In the late 1990s, with the rapid development of complex applications such as Internet applications and scientific computing, semi-structured models began to emerge, including XML models, JSON models, and graph models. In the new century, with the continuous development of applications such as e-commerce and business intelligence, the data analysis model has become a research hotspot, mainly including relational ROLAP and multi-dimensional MOLAP. Since 2010, with the rapid development of big data industry applications, the big data model represented by NoSQL and NewSQL database systems has become a new research hotspot. This article summarizes the above data models, and analyzes the performance of typical database system selected from each model.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5649
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
数据模型及其发展历程
本站小编 Free考研考试/2022-01-02
相关话题/数据 科学 互联网 数据库 学科
新型数据管理系统研究进展与趋势
摘要:随着各类新型计算技术和新兴应用领域的浮现,传统数据库技术面临新的挑战,正在从适用常规应用的单一处理方法逐步转为面向各类特殊应用的多种数据处理方式.分析并展望了新型数据管理系统的研究进展和趋势,涵盖分布式数据库、图数据库、流数据库、时空数据库和众包数据库等多个领域.具体而言:分布式数据管理技术是 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种保序加密域数据库认证水印算法
摘要:加密域水印技术适用于云环境下的隐私保护(加密)和数据安全认证(加水印).通过结合保序加密、离散余弦变换、密码哈希和数字水印技术,提出了加密域数据库认证水印算法.首先对数据进行保序加密,以达到对敏感数据内容的隐私保护;对加密后的数据进行分组和离散余弦变换处理,然后将交流系数的哈希(Hashing ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于数据集分割的云工作流模型库并行检索方法
摘要:在由多个行业云服务平台组成的集成服务平台中,随着行业云服务平台加盟数及各平台下租户数量的不断增多,其底层的云工作流模型库的规模也必将不断增大.当云工作流模型库的规模超大时,需要一种效率更高的并行检索方法去满足云工作流模型库高效检索的需求.鉴于此,采用均匀划分法或自动聚类法对大规模云工作流模型库 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02云环境下基于多目标的多科学工作流调度算法
摘要:针对现有云环境下的多科学工作流调度算法中存在的未考虑安全调度问题,提出了多科学工作流安全-时间约束费用优化算法MSW-SDCOA(multi-scientificworkflowssecurity-deadlineconstraintcostoptimizationalgorithm).首先, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据驱动的双层次软件过程挖掘方法
摘要:为了解决软件过程数据因活动信息及案例属性的缺失而无法应用传统过程挖掘方法的问题,以软件过程数据为研究对象,提出了一种双层次的软件过程挖掘方法.在活动层,提出加权结构连接向量模型对过程日志进行向量化,通过平均活动熵来确定过程日志模糊聚类的结果,将聚类结果作为活动信息支持后续挖掘工作的开展;在过程 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向对象软件内聚度度量数据分布的实证研究
摘要:度量数据的分布信息对于理解和使用面向对象软件度量有重要意义.人们对面向对象软件规模度量、耦合度度量乃至继承维度的度量数据的分布都有研究,但对除内聚度缺乏度LCOM之外的内聚度度量数据的分布却缺乏研究.已有的实证研究表明,LCOM并不是好的内聚度度量,因此探讨其他内聚度度量数据分布很有必要.对包 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于用户轨迹数据的移动推荐系统研究
摘要:近年来,随着移动智能设备的普及,移动社交网络方兴未艾,用户习惯和朋友分享自己的精彩经历,因此产生了大规模具有时空属性的用户轨迹数据.从狭义的角度来看,轨迹数据是指连续采样的GPS数据.从广义的角度来看,在时空域存在连续性的序列,都可以称作轨迹.例如:在社交网络上的用户签到序列就可以认为是粗粒度 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种不确定图数据库上的相似性连接方法
摘要:在确定图上进行的相似性连接已有许多研究成果.然而,在实际应用中会有许多因素使得图结构数据变得不确定.研究了不确定图数据库上的相似性连接问题.采用联合概率分布表示法来描述图中边的不确定性,结合一种新的图的相似性度量方法,给出了不确定图数据库上的相似性连接的形式化定义,并设计了一组过滤策略来减少连 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据广播调度自适应信道划分与分配方法
摘要:随着移动网络的不断发展,移动终端设备的计算能力与日俱增,越来越多的用户倾向于通过移动网络获取信息资源,这使得实时按需数据广播面临新的挑战:(1)数据内容和规模的多样化;(2)用户请求的实时性与需求多样性使得热点数据增加,直接导致广播数据总量的剧增;(3)用户对服务质量和水平的要求越来越高.当前 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据驱动的软件智能化开发方法与技术专题前言
摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5534 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02