



1 天津商业大学 生物技术与食品科学学院,天津 300134;
2 中国科学院天津工业生物技术研究所,天津 300308
收稿日期:2016-06-29;接收日期: 2016-09-5; 网络出版日期:2016-09-29 基金项目:国家自然科学基金 (Nos. 21506244, 31370089),天津市自然科学基金 (Nos. 14ZCZDSY00065, 15JCQNJC09500, 16JCYBJC23500)资助
摘要: S-腺苷-L-甲硫氨酸依赖型尿卟啉原Ⅲ转甲基酶 (S-adenosy-L-methionine uroprophyrinogen Ⅲ methyltransferase, SUMT) 催化尿卟啉原Ⅲ (Uroprophyrinogen Ⅲ, urogen Ⅲ) 的中心碳原子C-2和C-7位上甲基化生成前咕啉-2,是维生素B12生物合成途径中的一步关键酶,但大部分SUMT受其底物urogen Ⅲ和副产物S-腺苷同型半胱氨酸(S-adenosy-L-homocysteine, SAH) 的抑制作用。为了挖掘能耐受高浓度urogen Ⅲ的转甲基酶,文中从荚膜红细菌Rhodobacter capsulatus SB1003中克隆2个SUMT基因 (RCcobA1, RCcobA2),经表达与纯化后,检测发现RCcobA1和RCcobA2的酶活分别为27.3 U/mg和68
关键词: 维生素B12 尿卟啉原Ⅲ转甲基酶 尿卟啉原Ⅲ 酶偶联法 荚膜红细菌
Purification and characterization of S-adenosyl-L-methionine:uroporphyrinogen Ⅲ methyltransferase from Rhodobacter capsulatus SB1003
Kang Jie1,2, Fang Huan2, Dong Huina2, Song Wenjun1




1 College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China;
2 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
Received: June 29, 2016; Accepted: September 5, 2016; Published: 2016-September-29
Supported by: National Natural Science Foundation of China (Nos. 21506244, 31370089), Natural Science Foundation of Tianjin (Nos. 14ZCZDSY00065, 15JCQNJC09500, 16JCYBJC23500)
Corresponding authors:Wenjun Song. Tel: +86-22-26669611; E-mail: songwenjun@tjcu.edu.cn
Dawei Zhang. Tel: +86-22-84861945; E-mail: zhang_dw@tib.cas.cn
Abstract: Biosynthesis of vitamin B12 (VB12) requires the methylation at positions C-2 and C-7 of the precursor uroporphyrinogen Ⅲ (urogen Ⅲ) to precorrin-2 by S-adenosyl-L-methionine uroporphyrinogen Ⅲ methyltransferase (SUMT), which is a potential bottleneck step. Most of SUMTs are inhibited by urogen Ⅲ and by-product S-adenosyl-L-homocysteine (SAH). In order to mine an SUMT that lacks such an inhibitory property to drive greater flux through the VB12 biosynthetic pathway, we cloned two SUMT genes (RCcobA1, RCcobA2) from Rhodobacter capsulatus SB1003 and expressed them in Escherichia coli BL21 (DE3). Thereafter, the two enzymes were purified and their specific activity of 27.3 U/mg, 68.9 U/mg were determined respectively. The latter was 2.4 times higher than PDcobA (27.9 U/mg) from Pseudomonas denitrifican. Additionally, RCcobA2 could tolerate over 70 μmol/L urogen Ⅲ, which has never been reported before. Hence, RCcobA2 can be used as an efficient enzyme to regulate the VB12 metabolic pathway and enhance VB12 production in industrial strains.
Key words: vitamin B12 uroporphyrinogen Ⅲ methyltransferase uroporphyrinogen Ⅲ tandem-enzyme reaction Rhodobacter capsulatus
在维生素B12 (VB12)生物合成途径中,8分子5-氨基乙酰丙酸 (5-aminolevulinic acid,ALA)在氨基乙酰丙酸脱氢酶 (HemB)、胆色素原脱氨酶 (HemC)、尿卟啉原Ⅲ合成酶 (HemD)的逐级催化作用下,经缩合、脱氨、聚合、环化等反应,最终合成urogen Ⅲ[1]。Urogen Ⅲ的合成不仅标志着VB12中心环碳骨架初步形成,而且也是合成其他天然四吡咯环类化合物,如血红素、叶绿素等分支的前体[2] (图 1) 。因此,SUMT催化2分子S-腺苷-L-甲硫氨酸 (SAM)的甲基转移到urogen Ⅲ生成前咕啉-2是将urogen Ⅲ引入VB12合成途径的第一步关键酶。根据功能和大小不同,将参与不同合成途径中的SUMT分为3类,具体信息如表 1所示。
![]() |
图 1 四吡咯环类化合物合成路径简图 Figure 1 Synthesis pathway of tetrapyrroles. |
图选项 |
表 1 SUMT的分类及特点Table 1 Classification and features of SUMTs
Category | Characteristic | Protein | Metabolic pathway | Source |
The first | Only SUMT activity; dimeric protein of 30 kDa subunits | CobA | Vitamin B12 | Methanobacterium ivanovii[3] Pseudomonas denitrificans[4] |
SirA | Siroheme | Bacillus megatherium[5] | ||
Met1P | Saccharomyces cerevisiae[6] | |||
UPM1 | Arabidopsis thaliana[7] | |||
NirE | Hemd1 | Pseudomonas aeruginosa[8] | ||
The second | SUMT and HemD activity; dimeric protein of 50 kDa subunits | CobA/HemD | Tetrapyrrols | Lactobacillus reuteri[9] Desulfovibrio vulgaris[10] Selenomonas rum inantium[11] |
The third | SUMT,dehydrogenase and ferrochelatase activity; dimeic protein of 50 kDa subunits | CysG | Tetrapyrrols | Escherichia coli[12] Salmonella enterica[13] |
表选项
目前为止,来自几个不同物种的SUMT,如沙门氏菌Salmonella enterica的CysG[13]、脱氮假单胞菌Pseudomonas denitrificans的PDCobA[14]、嗜热栖热菌Thermus thermophiles的ttSUMT[15]、铜绿假单胞菌Pseudomonas aeruginosa的NirE[16]等,都经过酶学性质的初步探究和晶体结构解析,得出了较为一致的结论:大部分SUMT都受自身底物urogen Ⅲ和副产物SAH的抑制作用,但却不受前咕啉-2和代谢途径终产物VB12的反馈抑制。这种特殊的酶学性质可能是合成VB12代谢途径中一种重要的调控方式,也可能是导致VB12微生物发酵产量无法突破的原因之一。法国的RPR公司曾经提高了P. denitrificans中cobA基因的拷贝数,发现对提高VB12产量有所帮助[17],为了进一步克服urogen Ⅲ的抑制作用,RPR公司建议在P. denitrificans中异源表达来自产甲烷菌Methanobacterium ivanovii的SUMT编码基因[18]。Piao等[19]在费氏丙酸菌Propionibacterium freudenreichii中过表达内源的cobA基因,使VB12产量比空载菌株提高1.7倍。目前,国内外还没有报道能够完全解除底物urogen Ⅲ和SAH抑制作用的SUMT。
荚膜红细菌Rhodobacter capsulatus是紫色非硫光合细菌,具有在有氧或无氧、黑暗或光照等环境下生存的能力,能够合成多种吡咯环类化合物适应不同条件下的代谢需求[20]。但在无氧和有氧条件下,都需要合成VB12辅助完成DNA修复、甲硫氨酸合成等生理功能,并且,R. capsulatus具有缩减其他分支途径,使代谢流直接流向特定路径的复杂而周密的调控机制[21]。因此,推测来源于R. capsulatus的SUMT可能在VB12合成代谢流中有相对优势。此外,Deery等[22]报道在大肠杆菌中表达含有R. capsulatus中的SUMT编码基因的操纵子,合成了VB12途径的中间代谢物氢咕啉酸,推测可能是R. capsulatus的SUMT催化更多urogen Ⅲ进入VB12代谢流,缓解了合成途径的瓶颈。为了研究R. capsulatus的SUMT是否确实具有合成VB12的优势,本文进行了R. capsulatus SB1003中SUMT的纯化和酶学性质研究。
1 材料与方法1.1 菌株、质粒与设计的引物文中所用菌株、质粒列于表 2,引物均列于表 3中。
表 2 菌株与质粒Table 2 Strains and plasmids
Strains or plasmids | Function | Properties | Source |
E. coli DH5α | Clone and plasmid propagation | F- φ80 lacZΔM15Δ (lacZYA- argF) U169 deoR recA1 endA1 hsdR17(rk- mk+) phoA supE44λ- thi-1 gyrA96 relA1 | This lab |
E. coli BL21 (DE3) | Protern expression | F- ompT hsdSB (rB-mB-)gal dcm rne131 (DE3) | This lab |
R. capsulatus SB1003 | PCR template | Wild-type | This lab |
P. denitrificans | PCR template | Wild-type | This lab |
Bacillus megatherium | PCR template | Wild-type | This lab |
pET-28a (+) | Control vector | T7-promoter Kanr His-Tag coding sequence T7-terminator pBR322 orign | This lab |
pET28a-PDcobA | Expression of PDcobA | As above | This work |
pET28a-RCcobA1 | Expression of RCcobA1 | As above | This work |
pET28a-RCcobA2 | Expression of RCcobA2 | As above | This work |
pET28a-hemB | Expression of HemB | As above | This work |
pET28a-hemC | Expression of HemC | As above | This work |
pET28a-hemD | Expression of HemD | As above | This work |
pET28a-SirC | Expression of SirC | As above | This work |
表选项
表 3 文中所用引物Table 3 Primers used in this study
Primer name | Primer sequence (5′-3′) | Restriction enzyme site |
RCcobA1-F | CTAGCTAGCATGACCCAGATCCTTCGC | NheⅠ |
RCcobA1-R | CCCAAGCTTTCATATCACGGCCTCGAG | Hind Ⅲ |
RCcobA2-F | GGAATTCCATATGAGCGGTTTCGTTTCT | NdeⅠ |
RCcobA2-R | CCGCTCGAGTCAGGCCTCCGGCGCG | XhoⅠ |
T7 | TAATACGACTCACTATAGGG | |
T7-Term | GCTAGTTATTGCTCAGCGG | |
The underlined letters indicate recognition site of specific restriction enzyme. |
表选项
1.2 培养基、酶及主要试剂LB 培养基 (1 L):氯化钠 10 g,胰蛋白胨10 g,酵母提取物5 g。
酶:限制性内切酶购于Thermo Fisher Scientific公司。DNA聚合酶PrimerSTAR Mix购自TaKaRa公司。2×Taq PCR MasterMix购于北京天根生化科技有限公司。
主要试剂:基因组DNA提取试剂盒 (DP302-02) ,质粒小提试剂盒 (D6943-02) ,胶回收试剂盒和柱式PCR产物纯化试剂盒 (D6492-02) 购于OMEGA。引物合成和测序都在金唯智公司。Millipore超滤管购于上海俊晟公司。Ni-NTA填料购于GE Healthcare。其他未特殊指明的试剂均购于Sigma公司。平衡缓冲液:20 mmol/L磷酸二氢钠,0.5 mol/L氯化钠,30 mmol/L咪唑,pH 7.4;洗涤缓冲液:20 mmol/L磷酸二氢钠,0.5 mol/L氯化钠,100 mmol/L咪唑,pH 7.4;洗脱缓冲液:20 mmol/L磷酸二氢钠,0.5 mol/L氯化钠,500 mmol/L咪唑,pH 7.4;蛋白保存缓冲液:50 mmol/L Tris-HCl,150 mmol/L氯化钠,20% (V/V) 甘油,pH 7.5。
1.3 主要器材PTC-1148型PCR仪,美国BIO-RAD公司;连续波长多功能酶标仪 (SpectraMax M5) ,美国MD公司;高压细胞破碎仪 (JN-3000 Plus),天津上善科技公司;真空离心浓缩仪 (PTSB2012-059) ,天津美瑞泰克公司;厌氧培养箱 (Sci-tive N),北京隆福佳公司。
1.4 方法1.4.1 基因克隆与构建表达菌株从P. denitrifican和SB1003菌株中提取基因组总DNA,并以此为模板,用Primer premier 5.0软件设计引物,PCR扩增3个编码SUMT基因片段,并和表达载体pET-28a(+)分别用相应的限制性内切酶切割、连接,转化入感受态E. coli DH5α,转化液涂布于含卡那霉素50 μg/mL的LB 平板上培养,T7载体常用引物进行菌落PCR验证,送阳性克隆到公司测序。重组质粒pET28a-PDcobA、pET28a-RCcobA1和pET28a- RCcobA2分别导入表达菌株BL21(DE3) ,冻存菌液。基因hemB、hemC、hemD和sirC的克隆和表达载体的构建按照文献[21]操作。
1.4.2 蛋白的表达与纯化将上述表达菌株接种于LB培养基中,培养至OD600至0.6-0.8,加入终浓度为0.4 mmol/L IPTG诱导蛋白表达,16 ℃培养过夜。
以下所有操作都在4 ℃或冰上进行。离心 (5 000 r/min、20 min) 收集菌体,用平衡缓冲液重悬,高压破碎后,11 000 r/min离心1 h,0.22 μm滤膜过滤,过镍柱;接着用洗涤缓冲液冲洗3次,每次洗10倍的柱体积;最后用3-5倍柱体积的洗脱缓冲液将结合到填料上的目的蛋白洗脱下来,并借助超滤管将目的蛋白中的缓冲液更换成蛋白保存缓冲液,最后储存在-20 ℃。
制备蛋白样,通过SDS-聚丙烯酰氨凝胶电泳的方法判断蛋白的表达与纯化。按照BCA试剂盒对蛋白定量。
1.4.3 酶偶联法为了验证酶偶联法实验能否重现,按照文献[23]方法进行操作。反应体系如下:5 mmol/L ALA,200 μmol/L SAM,1 mmol/L 1-萘乙酰胺 (NAD+),5×缓冲液 (脱气),0.32 μmol/L HemB,2.27 μmol/L HemC,2.12 μmol/L HemD,10.69 μmol/L SUMT,1 μmol/L SirC,水补齐至总体积为100 μL。以不加SUMT的反应液为对照,分别添加PDcobA、RCcobA1和RCcobA2的反应液为实验组,在黑色96孔板中,37 ℃温育20 min,用酶标仪进行光谱扫描 (200-700 nm)。
1.4.4 酶活测定酶促反应体系按照1.4.3。待反应液温育 10 min后,快速加入ALA,振荡混匀,用动力学方法检测3-20 min之间吸光度值随时间的变化。根据文献[16]报道 Sirohydrochlorin (SHC) 的摩尔吸光系数 (ε 376 nm) 为2.4×105 mol/(L·cm),计算酶促反应初速度,折算出酶活,酶活单位 (U)定义为在最适条件下,1 h内催化1 nmol ALA转化成前咕啉-2所需要的酶量 (mg)。
1.4.5 urogen Ⅲ的制备由于没有商品化的urogen Ⅲ,参照文献[24]报道的方法 (方法略有改动),进行urogen III制备实验。在厌氧箱中,利用裹有锡箔纸的厌氧玻璃瓶为反应容器,加入5×缓冲液 (脱气),5 mmol/L ALA,0.32 μmol/L HemB,2.27 μmol/L HemC,2.12 μmol/L HemD,水补齐至总体积为20 mL,37 ℃反应2 h,随后将反应液80 ℃热处理15 min,使酶失活。0.22 μm滤膜过滤,将滤液在真空条件下离心浓缩后,无氧冻存。取10 μL的制备样,加90 μL 1 mol/L HCl暴露光下1 h,用酶标仪扫描405 nm处的吸光度值并计算urogen Ⅲ的浓度 (ε 405 nm=5.4×105 mol/(L·cm))。
1.4.6 urogen Ⅲ和SAH对酶活的抑制反应体系为:5×缓冲液 (脱气),200 mmol/L SAM,100 μmol/L NAD+,1 mmol/L SirC,2 μmol/L SUMT,按照方法1.4.4分别检测不同浓度urogen Ⅲ (0-70 μmol/L) 和SAH (0-60 μmol/L) 条件下对应的初速度,利用双倒数法测定米氏方程中的参数Km和Kcat。
2 结果与分析2.1 核苷酸序列比对分析用Clustal Omega软件对克隆获得的基因PDcobA、RCcobA1和RCcobA2与数据库中已登录的来自不同物种的编码SUMT基因进行核苷酸序列比对分析。结果如表 4所示,不同种属来源的基因,其序列的同源性介于40%-65%之间,亲缘关系较近的不同属之间的序列同源性在80%左右,同属的不同菌种,SUMT的同源性均在90%以上,说明SUMT的核苷酸序列相对较保守,酶学特性的差异受蛋白高级结构的影响。
表 4 SUMT的核苷酸序列比较Table 4 Nucleotide sequence alignment of SUMTs
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||
cysG_EC | 1 | *** | ||||||||||||
cysG_SE | 2 | 80.9 | *** | |||||||||||
cobA_PD | 3 | 52.8 | 54.6 | *** | ||||||||||
cysG_PF | 4 | 53.7 | 52.6 | 56.4 | *** | |||||||||
cobA2_RC | 5 | 50.8 | 50.4 | 53.8 | 59.6 | *** | ||||||||
sumt_TT | 6 | 49.7 | 50.8 | 53.0 | 54.0 | 51.0 | *** | |||||||
cobA-hemO_LR | 7 | 47.2 | 49.0 | 46.5 | 45.4 | 43.3 | 46.4 | *** | ||||||
sumt _GS | 8 | 54.8 | 55.8 | 56.1 | 53.4 | 52.5 | 51.6 | 52.4 | *** | |||||
nirE_PA01 | 9 | 57.9 | 59.2 | 59.2 | 61.1 | 54.6 | 60.0 | 48.4 | 57.7 | *** | ||||
nirE_PAM18 | 10 | 57.8 | 59.3 | 59.2 | 60.9 | 54.4 | 60.0 | 48.5 | 57.7 | 99.9 | *** | |||
cobA_PA01 | 11 | 56.8 | 56.2 | 59.1 | 58.3 | 55.2 | 55.8 | 47.4 | 58.1 | 62.8 | 62.7 | *** | ||
cysG_PA01 | 12 | 56.7 | 55.8 | 59.0 | 58.2 | 55.0 | 55.6 | 47.5 | 57.7 | 62.9 | 62.8 | 99.6 | *** | |
cobA1_RC | 13 | 51.6 | 52.1 | 55.5 | 53.6 | 54.6 | 52.1 | 44.4 | 51.3 | 57.7 | 57.8 | 61.2 | 61.1 | *** |
EC: E. coli; SE: S. enterica; PD: P. denitrificans; PF: P. freudenreichii; RC: R. capsulatus; TT: T. thermophiles; LR: Lactobacillus reuteri; GS: Geobacillus stearothermophilus; PA: P. aeruginosa. |
表选项
2.2 高级结构比对分析为了分析3个SUMT的结构与功能的关系,用ESPript 3.0 (http://espript.ibcp.fr/ESPript/ESPript/index.php) 软件,以PDcobA作为预测模板,将RCcobA1,RCcobA2和NirE进行二级结构比对 (图 2A)。发现氨基酸序列的同源性都接近50%,亚基的主要构成组分都是由10个β-折叠片层和9个α-螺旋交替排列的,其中C端的β8和β9之间是用β-转角连接,模体中还存在2个310-螺旋 (η) 及0.08%无规则卷曲 (特指loop)。RCcobA1和RCcobA2与SUMT序列上高度保守区域的存在初步说明了它们具有相似的转甲基功能。
![]() |
图 2 几个SUMT的二级结构比对 (A) 和以PDcobA为模板的三级结构模拟图 (B) Figure 2 Structure-based amino acid sequence alignment (A) and superposition of tertiary structure models (B) from RCcobA1 and RCcobA2 with NirE and PDcobA. Helices and β-structures as found in PDcobA are indicated. Red boxes highlight identical amino acids among these four SUMTs. The tertiary structural models are shown in ribbon representation: PDcobA (red) and NirE (yellow) and RCcobA1 (green) as well as RCcobA2 (purple). The urogen Ⅲ molecule is shown as ball and stick model. The beginnings and ends of flexible loops are indicated by gridlines. |
图选项 |
经过与PDB编号为2YBO、1S4D、1VA0、1VE2的蛋白比对后,用Discovery Studio 4.1的 MODELLER方法同源建模,进行重叠比较,结果如图 2B所示。4个SUMT的结构折叠方式非常相似,形成“螃蟹”的构型,分析发现,其N端 (β3-α2结构域) 和C端 (β6-α5结构域) 分别存在1个氨基酸序列非保守的loop,组成2个“螯”形,与一些内部的氨基酸残基共同构成底物urogen Ⅲ的结合口袋,并且loop折叠方式和长度存在不同。Storbeck等[24]研究发现,NirE的loop区氨基酸残基可能参与底物羧基化反应或对咕啉环的质子重排发挥重要作用。因此,4个SUMT的loop区不同,形成的底物结合口袋也不同,可能会对酶本身的催化机制和对底物urogen Ⅲ耐受性造成差异。
2.3 SUMT表达与纯化文献[25-26]报道,当SUMT在大肠杆菌中表达时,催化产物在紫外灯照射下可以发出粉红色荧光。为了初步判断3个基因是否在BL21中正常表达,以BL21/pET28a菌株活化后的平板为对照,观察上述3种重组菌的颜色对比,结果如图 3所示,BL21/pET28a-PDcobA和BL21/ pET28a-RCcobA2两株菌都发出强烈红色荧光,与预期结果一致,说明SUMT基因在BL21中能正常表达且具有酶活。BL21/pET28a-RCcobA1有微弱荧光,推测可能是RCcobA1的酶活较低,积累荧光产物量较少的原因。
![]() |
图 3 紫外灯照射下3个SUMT基因表达菌株与空载菌株 (对照) 的荧光对比 Figure 3 Expression of the SUMTs in E. coli cultured in plates illuminated with UV light. |
图选项 |
随后收集纯化后的蛋白经12% SDS-聚丙烯酰胺凝胶电泳检测,结果如图 4所示,PDcobA、RCcobA1和RCcobA2的蛋白分子量大小分别约为32 kDa、30 kDa和29 kDa,与理论分子量一致。
![]() |
图 4 SDS-PAGE分析纯化后的SUMT蛋白 Figure 4 SDS-PAGE analysis of purified proteins from PDcobA,RCcobA1 and RCcobA2. |
图选项 |
2.4 酶活及动力学常数测定房欢等[23]曾经报道,利用酶偶联法可以将SUMT催化产生的不稳定产物前咕啉-2转化成在376 nm处有特征吸收峰的化合物SHC。结果如图 5所示,不加SUMT的多酶反应体系在 400 nm和500 nm处有吸收峰,应该是urogen Ⅲ的特征吸收峰。而分别添加3个SUMT的反应液都在376 nm处多1个新的吸收峰,与文献报道结果一致。说明此方法可以快速、准确的判断新物质SHC的合成,并且可以用于SUMT酶活检测。
![]() |
图 5 多酶反应体系的全波长扫描图 Figure 5 UV-visible absorption spectra of products in the tandem-enzyme assay. |
图选项 |
在相同检测条件下,RCcobA2的酶活 (68.9 U/mg) 比PDcobA的酶活 (27.9 U/mg) 高2.4倍,但RCcobA1的酶活与PDcobA基本一致,动力学常数如表 5。文献[23]报道,对CysG结构的N端loop中氨基酸 (Lys-72) 定点突变后,酶活变化很大,而根据二级结构比对结果,发现RCcobA1在对应位置的氨基酸残基是苯丙氨酸 (F),而其他2个SUMT的氨基酸残基为甘氨酸 (G),虽然都是非极性氨基酸,但后者形成的空间位阻较小,可能利于酶与底物的快速结合,进而酶活相对较高。
表 5 不同SUMT的动力学常数对比Table 5 Kinetic parameters of SUMTs from various sources
SUMT | Urogen Ⅲ | |||
Kcat (s-1) | Km (μmol/L) | Kcat/Km (s-1/(μmol/L)) | Source | |
NirE (P. aeruginosa) | 1.6×10-3 | 9.8 | 1.6×10-4 | Reference [8] |
CysG (E. coli) | 1.9×10-3 | 39.7 | 4.8×10-5 | Reference [12] |
RCcobA1 (R. capsulatus) | 1.2×10-3 | 4.0 | 3.0×10-4 | This work |
RCcobA2 (R. capsulatus) | 2.8×10-3 | 10.8 | 2.7×10-4 | This work |
表选项
2.5 urogen Ⅲ和SAH对酶活的抑制情况检测结果如图 6所示,RCcobA1和RCcobA2这2个酶对urogen Ⅲ和SAH耐受程度分别高达70 μmol/L和5 μmol/L,相比其他已报道过的SUMT有一定优势,推测可能是 R. capsulatus菌株的独有特性。通过三级结构比对发现,RCcobA1和RCcobA2的底物结合口袋与PDcobA和NirE不同,导致底物进出难易程度不同,这可能是不同种类SUMT受urogen Ⅲ抑制程度不同的原因。
![]() |
图 6 不同浓度的urogen Ⅲ和SAH对RCcobA1和RCcobA2酶活的影响 Figure 6 Inhibition of RCcobA1 and RCcobA2 activity by urogen Ⅲ and SAH. |
图选项 |
3 结论随着对VB12合成途径的深入研究,前人[27-28]发现SUMT的催化活性受底物urogen Ⅲ的抑制是工业生产VB12的瓶颈之一,因此挖掘能够耐受高浓度urogen Ⅲ和SAH的SUMT,调控前体尽可能流向VB12途径是提高产量的必由之路。Blanche等[4]研究发现P. denitrificans中的PDcobA催化活性很低,并且当urogen Ⅲ浓度达到 2 μmol/L时就明显受到抑制。Raux等[9]后来发现来自于B. megaterium的SUMT对urogen Ⅲ敏感程度已经达到0.5 μmol/L。目前发现能耐受较高浓度底物的SUMT是NirE (P. aeruginosa) 和CorA (M. ivanovii),但是都没有突破20 μmol/L[8-9]。本文对来自R. capsulatus SB1003中尿卟啉原Ⅲ转甲基酶RCcobA1和RCcobA2进行表达纯化,高级结构比对,酶活测定以及对底物urogen Ⅲ和副产物SAH耐受性的初步研究。结果表明,2个SUMT都能在BL21(DE3) 中高效可溶性表达且诱导之后在UV灯照射下发出红色荧光。与已经报道的SUMT进行高级结构比对,发现结构域是由β-折叠和α-螺旋交替连接形成的,不同之处在于构成urogen Ⅲ结合口袋的2个loop区,氨基酸组成的个数、种类和卷曲构型都极为不同,造成结合口袋的大小和关键的氨基酸残基也不相同,可能导致酶学性质有所差异。酶活检测发现RCcobA2比PDcobA1高2.4倍,并且当urogen Ⅲ浓度高达70 μmol/L时其活性仍几乎不受抑制,本发现可以为解除VB12合成途径的瓶颈及提高VB12产量提供理论支持和方向指导,具有重要意义。但是,虽然在体外实验中,RCcobA2比其他SUMT表现出一定优势,还需要将其过表达到VB12工业生产菌株中,进一步验证RCcobA2是否在菌体内能解除urogen Ⅲ和SAH抑制作用,提高VB12产量。
参考文献
[1] | Kang Z, Zhang JL, Zhou JW, et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12.Biotechnol Adv, 2012, 30(6): 1533–1542.DOI: 10.1016/j.biotechadv.2012.04.003 |
[2] | Martens JH, Barg H, Warren M, et al. Microbial production of vitamin B12.Appl Microbiol Biotechnol, 2002, 58(3): 275–285.DOI: 10.1007/s00253-001-0902-7 |
[3] | Vannini V, Rodríguez A, Vera JL, et al. Cloning and heterologous expression of Lactobacillus reuteri uroporphyrinogen Ⅲsynthase/methyltransferase gene (cobA/hemD): preliminary characterization.Biotechnol Lett, 2011, 33(8): 1625–1632.DOI: 10.1007/s10529-011-0609-5 |
[4] | Blanche F, Debussche L, Thibaut D, et al. Purification and characterization of S-adenosyl- L-methionine: uroporphyrinogen Ⅲmethyltransferasefrom Pseudomonas denitrificans.J Bacteriol, 1989, 171(8): 4222–4231.DOI: 10.1128/jb.171.8.4222-4231.1989 |
[5] | Raux E, Leech HK, Beck R, et al. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium.Biochem J, 2003, 370(2): 505–516.DOI: 10.1042/bj20021443 |
[6] | Hansen J, Muldbjerg M, Chérest H, et al. Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes.FEBS Lett, 1997, 401(1): 20–24.DOI: 10.1016/S0014-5793(96)01423-8 |
[7] | Leustek T, Smith M, Murillo M, et al. Siroheme biosynthesis in higher plants, analysis of an S-adenosyl- L-methionine-dependent uroporphyrinogen Ⅲ methyltransferase from arabidopsis thaliana.J Biol Chem, 1997, 272(5): 2744–2752.DOI: 10.1074/jbc.272.5.2744 |
[8] | Storbeck S, Walther J, Müller J, et al. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L- methionine-dependent uroporphyrinogen Ⅲ methyltransferase required for heme d1 biosynthesis.FEBS J, 2009, 276(20): 5973–5982.DOI: 10.1111/j.1742-4658.2009.07306.x |
[9] | Blanche F, Robin C, Couder M, et al. Purification, characterization, and molecular cloning of S-adenosyl-L-methionine: uroporphyrinogen Ⅲ methyltransferase from Methanobacterium ivanovii.J Bacteriol, 1991, 173(15): 4637–4645.DOI: 10.1128/jb.173.15.4637-4645.1991 |
[10] | Lobo SA, Brindley A, Warren MJ, et al. Functional characterization of the early steps of tetrapyrrole biosynthesis and modification in Desulfovibrio vulgaris Hildenborough.Biochem J, 2009, 420(2): 317–326.DOI: 10.1042/BJ20090151 |
[11] | Anderson PJ, Entsch B, McKay DB. A gene, cobA+hemD, from Selenomonas ruminantium encodes a bifunctional enzyme involved in the synthesis of vitamin B12.Gene, 2001, 281(1/2): 63–70. |
[12] | Pencer JB, Stolowich NJ, Roessner CA, et al. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase.FEBS Lett, 1993, 335(1): 57–60.DOI: 10.1016/0014-5793(93)80438-Z |
[13] | Stroupe ME, Leech HK, Daniels DS, et al. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis.Nat Struct Biol, 2003, 10(12): 1064–1073.DOI: 10.1038/nsb1007 |
[14] | Vévodová J, Graham RM, Raux E, et al. Structure/ function studies on a S-adenosyl-L-methionine- dependent uroporphyrinogen Ⅲ C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis.J Mol Biol, 2004, 344(2): 419–433.DOI: 10.1016/j.jmb.2004.09.020 |
[15] | Rehse PH, Kitao T, Tahirov TH. Structure of a closed-form uroporphyrinogen-Ⅲ C-methyltransferase from Thermus thermophilus.Acta Crystallogr D Biol Crystallogr, 2005, 61(7): 913–919.DOI: 10.1107/S0907444905008838 |
[16] | Singh W, Karabencheva-Christova TG, Black GW, et al. Conformational dynamics, ligand binding and effects of mutations in NirE an S-adenosyl-L- methionine dependent methyltransferase.Sci Rep, 2016, 6: 20107.DOI: 10.1038/srep20107 |
[17] | Blanche F, Cameron B, Crouzet J, et al. Biosynthesis method enabling the preparation of cobalamins: WO9743421. 1997-11-20. |
[18] | Blanche F, Cameron B, Crouzet J, et al. Polypeptides involved in the biosynthesis of cobalamines and/or cobamides, DNA sequences coding for these polypeptides, and their preparation and use: EP0516647. 1998-12-30. |
[19] | Piao YZ, Yamashita M, Kawaraichi N, et al. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii.J Biosci Bioeng, 2004, 98(3): 167–173.DOI: 10.1016/S1389-1723(04)00261-0 |
[20] | McGoldrick H, Deery E, Warren M, et al. Cobalamin (vitamin B12) biosynthesis in Rhodobactercapsulatus.Biochem Soc Trans, 2002, 30(4): 646–648.DOI: 10.1042/bst0300646 |
[21] | Yin L, Bauer CE. Controlling the delicate balance of tetrapyrrole biosynthesis.Phil Trans R Soc B, 2013, 368(1622): 20120262.DOI: 10.1098/rstb.2012.0262 |
[22] | Deery E, Schroeder S, Lawrence AD, et al. An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis.Nat Chem Biol, 2012, 8(11): 933–940. |
[23] | Fang H, Dong HN, Cai T, et al. In vitro optimization of enzymes involved in precorrin-2 synthesis using response surface methodology. PLoS ONE, 2016, 11(3): e0151149. |
[24] | Storbeck S, Saha S, Krausze J, et al. Crystal structure of the Heme d1 biosynthesis enzyme NirE in complex with its substrate reveals new insights into the catalytic mechanism of S-adenosyl-L-methionine- dependent uroporphyrinogen III methyltransferases.J Biol Chem, 2011, 286(30): 26754–26767.DOI: 10.1074/jbc.M111.239855 |
[25] | Wang ZZ, Yan HW, Li S, et al. Coupled selection of protein solubility in E. coli using uroporphyrinogen Ⅲ methyltransferase as red fluorescent reporter. J Biotechnol, 2014, 186: 169-174. |
[26] | Wang ZZ, Li S, Li J, et al. Engineering uroporphyrinogen Ⅲ methyltransferase as a red fluorescent reporter in E. coli. Enzyme Microb Technol, 2014, 61-62: 1-6. |
[27] | Warren MJ, Raux E, Schubert HL, et al. The biosynthesis of adenosylcobalamin (vitamin B12).Nat Prod Rep, 2002, 19(4): 390–412.DOI: 10.1039/b108967f |
[28] | Escalante-Semerena JC, Warren MJ. Biosynthesis and use of cobalamin (B12).EcoSal Plus, 2008, 3(1).DOI: 10.1128/ecosalplus.3.6.3.8 |