吴姗, 张晓峰, 帅江冰, 李可, 虞惠贞, 金晨晨
浙江省检验检疫科学技术研究院, 浙江 杭州 310016
收稿日期:2015-09-21;修回日期:2016-02-03;网络出版日期:2016-07-25
资助课题:国家质量监督检验检疫总局科研项目(2013IK189,2015IK301);浙江省公益技术应用研究计划项目(2015C33042)
通信作者:Tel/Fax:+86-571-81100338;E-mail: zxf@ziq.gov.cn
摘要: [目的] 建立了单核细胞增多性李斯特菌(Listeria monocytogenes,单增李斯特菌)的肽核酸(Peptide nucleic acid, PNA)分子信标(Molecular beacon)的荧光扫描检测方法,以简化普通PNA原位荧光杂交(Fluorescence in situ hybridization, FISH)检测方法中显微镜观察步骤。[方法] 在具有单增李斯特菌特异性的肽核酸探针的5′和3′分别标记报告荧光基团和淬灭基团形成分子信标PNA探针,利用FISH技术和荧光扫描技术对单增李斯特菌进行检测。[结果] 用普通PNA探针进行荧光扫描检测时,以N1处理为空白对照,假阳性率11.4%,假阴性率为0;以N2处理为空白时,假阳性率降低至4.3%,但假阴性率上升为18.6%。用分子信标PNA探针进行检测时,用N1为空白对照时,假阳性率8.6%,假阴性率为1.4%;以N2处理作为空白时,假阳性率5.7%,假阴性率为1.4%。与普通探针比较,分子信标PNA探针能有效减少假阳性和假阴性的发生。2种普通PNA探针的杂交成功率分别为83.3%和95.2%;2种“分子信标化”的肽核酸探针的成功率分别为91.7%和90.5%,表明探针两端标记并不会降低与目标菌的杂交成功率。[结论] 将液相PNA-FISH和荧光扫描技术结合,通过大通量快速的荧光扫描检测可大幅提高检测效率。同时将肽核酸探针分子信标化,有效的降低了荧光扫描结果的假阳性,并通过了N1和N2两种空白对照处理把假阴性控制在较低的范围。
关键词: 肽核酸荧光原位杂交 分子信标 荧光扫描 单增李斯特菌
Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes
Shan Wu, Xiaofeng Zhang, Jiangbing Shuai, Ke Li, Huizhen Yu, Chenchen Jin
Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, Zhejiang Province, China
Abstract: [Objective] To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes.[Methods] The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe.[Results] When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria.[Conclusions] The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.
Key words: PNA-FISH molecular beacon fluorescence scanning Listeria monocytogenes
单核细胞增多性李斯特菌是李斯特菌属中人畜共患型的食源性致病菌。感染后常表现为脑膜脑炎、脑炎、骨髓炎、心肌炎、脓血症、流产等,对婴儿及免疫力低下的人群致死率高达54%-90%。该菌在自然界中广泛分布,环境适应性很强,可通过多种途径进入食品加工和生产过程污染食品,对消费者健康构成潜在威胁[1]。
在医学诊断及食品微生物检测中,对单增李斯特菌的检测除了通常使用的培养方法外[如ISO标准11290,1996 (11290-1),1998 (11290-2)和2004 (11290-1修订版1)],还开发了一系列的生物化学方法、免疫学方法和分子生物学方法等[1-4]。荧光原位杂交法是基于微生物细胞中16S或23S rRNA的高拷贝数和不易受环境影响的稳定性,而用于检测样品中的微生物[5-6]。Schmid等[7]报道了使用DNA探针结合FISH技术检测了李斯特菌属。肽核酸探针是一种以中性酰胺键为骨架的全新的DNA模拟物,可以序列特异地与DNA、RNA结合。将PNA探针和FISH技术结合可以克服DNA探针细胞穿透性差、杂交亲和力不强等弱点[5, 8]。
分子信标是一种在5′和3′末端自身形成一个8个碱基左右的发夹结构的茎环双标记寡核苷酸探针,两端的核酸序列互补配对,使得标记在一端的荧光基团与标记在另一端的淬灭基团紧紧靠近。当荧光基团被激发时,发生荧光共振能量转移,使荧光分子发出的荧光被猝灭分子吸收并以热的形式散发,荧光几乎完全被猝灭,因此荧光本底极低。当分子信标与序列完全互补的靶标分子结合形成双链杂交体时,信标茎杆互补区被拉开,荧光分子和猝灭分子距离增大,信标分子的荧光几乎100%恢复,且所检测到的荧光强度与溶液中靶标的量成正比。
传统的PNA-FISH法检测,虽然有较高检测灵敏度和特异性,如Morgan等[9]在检测血样中的大肠杆菌(Escherchia coli)和绿脓假单胞菌(Pseudomonas aerugionsa)时,灵敏度、特异性均达到100%,但结果的判断每一个样本都要依靠显微镜观察,而观察一个结果至少耗时2-3 min,这无疑是一大限速步骤。因此在本研究中引入荧光扫描技术,通过仪器对对应波长荧光的扫描可以快速的对检测结果进行初筛(完成2-3个荧光波段的96孔扫描,耗时不超过10 min),大大提高了检测速率和通量。本研究将PNA探针技术和分子信标技术结合,在具有单增李斯特菌特异性的肽核酸探针[10]的5′端和3′端分别标记报告荧光基团和淬灭基团,利用FISH技术和荧光扫描技术对单增李斯特菌进行检测。
1 材料和方法 1.1 PNA分子信标的设计 将具有单增李斯特菌特异性的PNA探针Lm-16S-2的5′端和3′端分别标记报告荧光基团-FAM和淬灭基团-BHQ1,形成具有分子信标结构的探针Lm-16S-mb。探针BacUin-mb是将阳性对照探针BacUin进行两端标记,改造成分子信标PNA探针。探针如表 1所示。BacUin为细菌通用探针[11]。所有探针由Daejeon (韩国)合成。
表 1. PNA探针序列 Table 1. PNA probes used in this study
Probe name | Nucleotide sequences (5′→3′) and fluorescent labeling | Probe location base No.; GenBank accession No. |
BacUin | CY3-CTGCCTCCCGTAGGA | - |
BacUin-mb | CY3-CTGCCTCCCGTAGGA-BHQ2 | - |
Lm-16S-2 | FAM-TAGTACAAAGGGTCG | 1247-1261; FJ434468 |
Lm-16S-mb | FAM-TAGTACAAAGGGTCG-BHQ1 | 1247-1261; FJ434468 |
表选项
1.2 细菌培养 李斯特菌株用BHI (脑心浸出液,北京路桥公司)培养。细菌在30 ℃、130 r/min条件下,振荡过夜,培养至对数生长期。
1.3 液相PNA分子信标的原位杂交 离心(2000×g,5 min)收集对数生长期的细菌,用磷酸缓冲液(PBS)洗涤1次,离心(2000×g,5 min),弃PBS,用50%酒精/PBS固定缓冲液重悬,细菌浓度控制在OD600=1.0-1.5,室温固定1 h后置于-20 ℃可保存6个月。取100 μL固定好的菌体,离心(2000×g,5 min),弃上清,加入50 μL含300 mmol/L PNA的杂交缓冲液[pH 9.0,20 mmol/L Tris,100 mmol/L NaCl,0.5% (W/V)十二烷基硫酸钠]室温重悬。同时设置两组空白对照:(1) 用50 μL不含PNA探针的杂交缓冲液重悬(N1);(2) 用40 μg/mL RNase (pH 7.5)重悬,37 ℃温育1 h,离心(2000×g,5 min),弃上清后加入50 μL含300 mmol/L PNA的杂交缓冲液重悬(N2)。样品于薄壁PCR管中,55 ℃ 水浴1.0 h。离心(2000×g,5 min),弃杂交缓冲液,加入200 μL已预热至55 ℃的洗涤缓冲液(pH 9.0,10 mmol/L Tris,1 mmol/L EDTA),55 ℃水浴20 min,2000×g离心5 min,弃洗涤缓冲液,再重复洗涤1次,加110-150 μL洗涤缓冲液重悬。
1.4 荧光扫描 取上述2中的重悬菌液100 μL加入黑色96孔板(COSTAR 3916)中,放入微孔板检测系统SpectraMax M4中,将读取模式设置为“荧光(Fluorescence)”和“顶读(Top Read)”模式。对FAM标记的探针,激发光和发射光的波长分别设置为:494 nm和522 nm;对CY3标记的探针,激发光和发射光的波长分别设置为:543 nm和570 nm,并将空白对照N1或N2设置为“空白”,进行荧光检测。
1.5 荧光扫描结果的判断 将对照N2设置为空白(值为0),将扫描后数值大于0的结果判断为阳性。将对照N1设置为空白,将扫描后数值大于0,且同时该孔在设置对照N2为空白时扫描值又小于0,同时满足上述2个条件的杂交液也判断为阳性。
1.6 显微镜观察确证 对应步骤1.3中最终的重悬菌液取2-5 μL涂片,风干后荧光显微镜观察荧光亮度及细菌的形态,对结果加以确证。
2 结果和讨论 2.1 荧光扫描和显微镜观察一端标记的普通PNA探针液相杂交结果 设置了2组空白对照,对照N1用空白替代探针;对照N2加入PNA探针前,用RNase酶处理菌液,使菌体的目标RNA被酶消化,而不能与探针结合。对照N1由于无探针加入,荧光本底值低,当设置其为空白时(值为0),荧光扫描的结果与显微镜结果(显微镜结果认为是真实结果)比较,易产生假阳性,而不易产生假阴性。如表 2、表 4所示,将N1设置为空白对照时,假阳性率为31.4%,不考虑两种空白对照产生的假阳性(N2有14个假阳性,N2为人为设定的阴性,因此该假阳性可不考虑),假阳性率也达到11.4%;而同时假阴性率则为0。对照N2的处理加入了探针,但无目标核酸,因此在洗涤不充分的情况下,会有游离的探针留在最后的检测样本中,使检测的荧光背景值升高,容易造成假阴性。当设置N2为空白对照时,假阳性率为4.3% (此时,没有N1产生的假阳性),明显较以N1为空白时低,但假阴性率达到18.6%。探针Lm-16S-2具有单核细胞增多性李斯特菌检测的特异性,不能与其他种属的李斯特菌结合,当与L. seeligeri ATCC35967,L. innocua ATCC33090,L. ivanovii Li01杂交时,荧光扫描结果显示不论用N1或N2作为空白对照,都有可能产生假阳性。但探针和目标菌杂交的成功率也并非100%,如表 2所示,单核细胞增多性李斯特菌L. monocytogenes NCTC7973和探针Lm-16S-2杂交时,3个反应仅1个成功;同时该菌和阳性对照探针BacUin杂交时,3个反应也只有2个成功。这可能由于目标菌的生长状态不理想,研究认为,目标菌若处在对数生长期,将利于PNA探针的结合和检测。本次实验中,探针Lm-16S-2和目标菌杂交的成功率为83.3% (10/12),探针BacUin和目标菌的杂交成功率为95.2% (20/21)。
表 2. 一端标记的普通PNA探针液相杂交结果 Table 2. Results of PNA probe liquid phase hybridization
Strains | Probes | Detection methods | Hybridization results | ||||
N1 | N2 | 1 | 2 | 3 | |||
L. monocytogenes | BacUin | Scanninga | 0 | +++* | ++* | ++ | +++ |
NCTC7973 | - | 0 | - | -** | -** | ||
Microscopeb | - | - | - | + | + | ||
Lm-16S-2 | Scanning | 0 | +++* | ++* | +++* | +++ | |
- | 0 | - | - | +++ | |||
Microscope | - | - | - | - | + | ||
L. monocytogenes | BacUin | Scanning | 0 | +++* | +++ | +++ | +++ |
EGD | - | 0 | ++ | -** | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-2 | Scanning | 0 | +++* | +++ | +++ | +++ | |
- | 0 | -** | +++ | -** | |||
Microscope | - | - | + | + | + | ||
L. monocytogenes | BacUin | Scanning | 0 | +++* | +++ | +++ | +++ |
SLCC2755 | - | 0 | -** | ++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-2 | Scanning | 0 | +++* | +++ | ++ | ++ | |
- | 0 | ++ | -** | -** | |||
Microscope | - | - | + | + | + | ||
L. monocytogenes | BacUin | Scanning | 0 | +++* | +++ | +++ | +++ |
54002 | - | 0 | +++ | ++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-2 | Scanning | 0 | +++* | +++ | ++ | +++ | |
- | 0 | +++ | -** | ++ | |||
Microscope | - | - | + | + | + | ||
L. seeligeri | BacUin | Scanning | 0 | +++* | +++ | +++ | ++ |
ATCC35967 | - | 0 | -** | ++ | -** | ||
Microscope | - | - | + | + | + | ||
Lm-16S-2 | Scanning | 0 | ++* | ++* | +++* | - | |
- | 0 | - | ++* | - | |||
Microscope | - | - | - | - | - | ||
L. innocua | BacUin | Scanning | 0 | +++* | +++ | +++ | +++ |
ATCC33090 | - | 0 | +++ | +++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-2 | Scanning | 0 | ++* | / | - | ++* | |
- | 0 | - | - | ++* | |||
Microscope | - | - | - | - | - | ||
L. ivanovii | BacUin | Scanning | 0 | +++* | +++ | ++ | ++ |
Li01 | - | 0 | +++ | -** | -** | ||
Microscope | - | - | + | + | + | ||
Lm-16S-2 | Scanning | 0 | +++* | ++* | +++* | - | |
- | 0 | - | +++* | - | |||
Microscope | - | - | - | - | - | ||
a -: scanning value<0; 0: set as negative control; +: 0<scanning value≤10; ++: 10<scanning value≤100; +++: scanning value>100; /: no numerical display. b -: no positive result observed by microscope; +: positive result observed by microscope. *false positive result comparing with the result of microscope observation. ** false negative result comparing with the result of microscope observation. |
表选项
2.2 荧光扫描和显微镜观察两端标记的分子信标PNA探针液相杂交结果 分子信标PNA探针组和普通PNA探针组一样,设置了2组空白对照进行检测,结果如表 3、表 4所示,当设置对照N1为空白时(值为0),假阳性率为21.4%,减去N2空白对照造成的假阳性个数(9个),假阳性率达到8.6%;同时,以N1为空白对照时,假阴性率为1.4%。本实验中加入的是两端标记的分子信标探针,以此降低检测时的荧光背景值,减少荧光扫描时假阴性的产生。当设置N2为空白对照时,假阳性率为12.9%,减去N1造成的5个假阳性,假阳性率为 5.7%,低于以N1为空白时的8.6%;假阴性率和以N1为空白对照时相同,都为1.4% (1/70)。探针Lm-16S-mb与L. seeligeri ATCC35967,L. innocua ATCC33090,L. ivanovii Li01杂交时,无论以N1或N2作为空白对照,荧光扫描的结果也都存在假阳性,该结果和以Lm-16S-2为探针时类似。表 3显示,探针Lm-16S-mb和单核细胞增多性李斯特菌L. monocytogenes NCTC7973杂交时,成功率也较低,3个反应2个成功;同时该菌和阳性对照探针BacUin-mb杂交时,3个反应只有1个成功,这和表 2的结果相似。虽然这2种探针的结果分别表述在表 2和表 3两个表格中,但实验中,同一种菌和这4种探针杂交的实验却是同步进行。因此,可能由于受菌的生长状态的影响,导致和这4种探针杂交成功率都未达到100%。实验中,探针Lm-16S-mb和目标菌杂交的成功率为91.7% (11/12),探针BacUin-mb和目标菌的杂交成功率为90.5% (19/21)。
表 3. 分子信标PNA探针液相杂交结果 Table 3. Results of molecular beacon based PNA probe liquid phase hybridization
Strains | Probes | Detection methods | Hybridization results | ||||
N1 | N2 | 1 | 2 | 3 | |||
L. monocytogenes | BacUin-mb | Scanninga | 0 | ++* | ++* | ++* | +++ |
NCTC7973 | - | 0 | ++* | - | ++ | ||
Microscopeb | - | - | - | - | + | ||
Lm-16S-mb | Scanning | 0 | - | ++ | +* | ++ | |
++* | 0 | +++ | - | +++ | |||
Microscope | - | - | + | - | + | ||
L. monocytogenes | BacUin-mb | Scanning | 0 | ++* | +++ | +++ | +++ |
EGD | - | 0 | +++ | +++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-mb | Scanning | 0 | - | +++ | ++ | -** | |
+++* | 0 | +++ | +++ | ++ | |||
Microscope | - | - | + | + | + | ||
L. monocytogenes | BacUin-mb | Scanning | 0 | +* | +++ | ++ | +++ |
SLCC2755 | - | 0 | +++ | ++ | ++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-mb | Scanning | 0 | +* | +++ | +++ | +++ | |
- | 0 | +++ | ++ | ++ | |||
Microscope | - | - | + | + | + | ||
L. monocytogenes | BacUin-mb | Scanning | 0 | ++* | +++ | +++ | +++ |
54002 | - | 0 | +++ | +++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-mb | Scanning | 0 | ++* | ++ | +++ | +++ | |
- | 0 | -** | +++ | +++ | |||
Microscope | - | - | + | + | + | ||
L. seeligeri | BacUin-mb | Scanning | 0 | ++* | +++ | ++ | +++ |
ATCC35967 | - | 0 | +++ | ++ | ++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-mb | Scanning | 0 | - | - | +* | - | |
++* | 0 | ++* | ++* | - | |||
Microscope | - | - | - | - | - | ||
L. innocua | BacUin-mb | Scanning | 0 | - | ++ | +++ | ++ |
ATCC33090 | +++* | 0 | +++ | +++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-mb | Scanning | 0 | +* | ++* | - | - | |
- | 0 | - | - | - | |||
Microscope | - | - | - | - | - | ||
L. ivanovii | BacUin-mb | Scanning | 0 | ++* | +++ | +++ | +++ |
Li01 | - | 0 | +++ | +++ | +++ | ||
Microscope | - | - | + | + | + | ||
Lm-16S-mb | Scanning | 0 | - | +* | - | - | |
+* | 0 | ++* | - | - | |||
Microscope | - | - | - | - | - | ||
a -: scanning value<0; 0: set as negative control; +: 0<scanning value≤10; ++: 10<scanning value≤100; +++: scanning value>100; /: no numerical display. b -: no positive result observed by microscope; +: positive result observed by microscope. * false positive result comparing with the result of microscope observation. ** false negative result comparing with the result of microscope observation. |
表选项
表 4. 两种PNA探针在不同空白对照下的假阳性率和假阴性率 Table 4. False positive/negative rate of two PNA probe types with different blank control
Probe type | Blank control | False positive rate | False negative rate | ||
Totala | Netb | Total | Net | ||
PNA probe | N1 | 31.4% (22/70) | 11.4% [(22-14)/70] | 0 (0/70) | -c |
N2 | 4.3% (3/70) | - | 18.6% (13/70) | - | |
Molecular beacon based PNA probe | N1 | 21.4% (15/70) | 8.6% [(15-9)/70] | 1.4% (1/70) | - |
N2 | 12.9% (9/70) | 5.7% [(9-5)/70] | 1.4% (1/70) | - | |
a: Total=all false positives/all samples. b: Net= (all false positives-false positive results from blank controls) /all samples. c: no corresponding value. |
表选项
2.3 普通PNA探针和分子信标PNA探针液相杂交结果比较 为了防止由于加入过量探针而引起的假阳性,在普通PNA探针的两头分别标记了荧光基团和淬灭基团,形成分子信标PNA探针。当探针未与目标核酸序列结合时,由于PNA的电中性骨架,无需普通核酸分子信标所需的“茎秆”设计,自然状态下PNA分子信标两头的荧光基团和淬灭基团以自聚集的方式靠近,所激发的荧光都被淬灭基团吸收,因此即便液相PNA荧光杂交液中存在过量的游离状态的PNA探针也检测不到荧光,不会产生假阳性。而那些与目标核酸结合的探针,由于探针伸展为线状,造成荧光基团和淬灭基团分离,发出荧光从而被检测到。
以N1为空白对照,用普通PNA探针的结果显示假阳性率为31.4%,除去N2空白对照产生的假阳性个数后,假阳性率仍达到11.4%,但假阴性率为0。而用分子信标PNA探针检测的结果显示,假阳性率为21.4%,除去N2产生的假阳性数,比例降低至8.6%,假阳性率低于普通PNA探针的结果;但假阴性率上升至1.4% (表 4)。分子信标PNA探针使荧光背景值下降,如表 3所示,当设定N1的荧光扫描值为0时,N2的荧光值都不大于100,且14个N2处理有5个显示的值小于0,这使得假阳性降低的同时,也致使出现了假阴性。
以N2为空白对照时,用普通PNA探针的结果显示假阳性率为4.3%,且并无N1引起的假阳性;但假阴性达到了18.6%。用分子信标PNA探针时,假阳性率为12.9%,除去N1造成假阳性,假阳性率为5.7%;假阴性率为1.4% (表 4)。不论是否对探针进行分子信标标记,使用N2为空白对照都能使荧光扫描结果的假阳性率大幅度降低,但普通PNA探针的假阳性率降低是以假阴性率升高为代价,而分子信标探针降低假阳性的同时,假阴性率也保持在较低的水平。
探针Lm-16S-2和Lm-16S-mb与目标菌杂交的成功率分别为83.3%和91.7%。 探针BacUin和BacUin-mb与目标菌的杂交成功率为95.2%和90.5%。从实验结果看,探针两端标记并不会影响与目标菌的杂交成功率。
用分子信标PNA探针进行检测时,不论用N1或N2作为空白对照,与普通探针比较都能大幅降低假阳性率;虽然分子信标探针能降低N2为空白时的假阴性率,但并不能完全避免假阴性。因此,在进行分子信标PNA检测时,建议同时设置上述提及的N1和N2两种空白对照,将N2设置为空白,荧光扫描后,将荧光值大于0的杂交液进行显微镜检测,这样可以较大幅度减少假阳性。同时再设置N1为空白,并将当N1设置为空白时荧光值大于0,而N2设置为空白时荧光值小于0的杂交液进行显微镜检测,以此避免假阴性的发生。一般来说,2种空白同时产生假阴性的可能性较小。
3 结论 由于PNA具有良好的细胞穿透性,及其与DNA和RNA特异性结合的高稳定性,使本研究的检测方法具有准确、灵敏的特点。同时将PNA探针结合分子信标标记和荧光扫描技术,在大幅降低假阳性(使用分子信标探针)、克服假阴性(设置2个空白对照)的情况下大幅提高检测效率,最后用显微镜对阳性样品进行确证,使检测具有分子生物学和形态学的双重保证,更加提高了鉴定的准确率。
参考文献
[1] | Volokhov D, Rasooly A, Chumakov K, Chizhikov V. Identification of Listeria species by microarray-based assay.Journal of Clinical Microbiology,2002, 40(12): 4720–4728. |
[2] | Allerberger F, Dierich M, Petranyi G, Lalic M, Bubert A. Nonhemolytic strains of Listeria monocytogenes detected in milk products using VIDAS immunoassay kit.Zentralblatt für Hygiene und Umweltmedizin,1997, 200(2/3): 189–195. |
[3] | Ingianni A, Floris M, Palomba P, Madeddu MA, Quartuccio M, Pompei R. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.Molecular and Cellular Probes,2001, 15(5): 275–280. |
[4] | Zeng HY, Zhang XF, Sun Z, Fang WH. Multiplex PCR identification of Listeria monocytogenes isolates from milk and milk-processing environments.Journal of the Science of Food and Agriculture,2006, 86(3): 367–371. |
[5] | Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.Nature Reviews Microbiology,2008, 6(5): 339–348. |
[6] | Almeida C, Azevedo NF, Fernandes RM, Keevil CW, Vieira MJ. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples.Applied and Environmental Microbiology,2010, 76(13): 4476–4485. |
[7] | Schmid M, Walcher M, Bubert A, Wagner M, Wagner M, Schleifer KH. Nucleic acid-based, cultivation-independent detection of Listeria spp. and genotypes of L. monocytogenes.FEMS Immunology and Medical Microbiology,2003, 35(3): 215–225. |
[8] | Daims H, Wagner M. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis.Applied Microbiology and Biotechnology,2007, 75(2): 237–248. |
[9] | Morgan M, Marlowe E, Della-Latta P, Salimnia H, Novak-Weekley S, Wu F, Crystal BS. Multicenter evaluation of a new shortened peptide nucleic acid fluorescence in situ hybridization procedure for species identification of select gram-negative bacilli from blood cultures.Journal of Clinical Microbiology,2010, 48(6): 2268–2270. |
[10] | Zhang XF, Wu S, Li K, Shuai JB, Dong Q, Fang WH. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii.International Journal of Food Microbiology,2012, 157(2): 309–313. |
[11] | Perry-O'Keefe H, Stender H, Broomer A, Oliveira K, Coull J, Hyldig-Nielsen JJ. Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific micro-organisms.Journal of Applied Microbiology,2001, 90(2): 180–189. |