张孝龙, 王永霞, 赵江源, 丁章贵, 文孟良, 李铭刚


云南大学, 云南省微生物研究所, 云南 昆明 650091
收稿日期:2015-09-28;修回日期:2015-10-21;网络出版日期:2015-06-04
资助课题:国家自然科学基金(31260012,21162039,21402169);云南省人才项目(2011CI001)
通信作者:李铭刚Tel:+86-871-65032170;E-mail:mgli727@126.com
摘要: [目的] 铁载体(Siderophore)是由微生物产生的一类低分子量金属离子螯合物。在生物医药、环境修复、健康食品等领域均具有广泛应用前景。文献调查显示,针对碱性环境真核微生物铁载体研究尚无相关报道。从中筛选高活性铁载体真菌具有重要意义。[方法] 采用铬天青S显色法对分离于云南省碱性湖泊-程海和个旧大屯碱性尾矿土壤的99株真菌进行筛选;利用“分光光度法”对菌株产铁载体能力和铁载体类型进行考察;采用固相萃取(SPE)手段对菌株铁载体富集效果进行考察;根据菌体形态电镜观察和ITS基因系统发育树构建,对菌株进行生物学鉴定。[结果] 通过初筛和复筛,确定菌株FEDT-866、FEDT-145、FECH-998和FECH-595均为铁载体高产菌株;所产铁载体类型主要为异羟肟酸型和羧酸型。除菌株FEDT-866外,铁载体活性产物适合采用固相萃取(SPE)方法进行富集。经生物学鉴定,菌株FEDT-866和FECH-998属于曲霉属,分别与Aspergillus tubigensis和A. nomius相似性较高;菌株FECH-595和FEDT-145属于青霉属,分别与Penicillium svalbardense和P. chrysogenum相似性较高。[结论] P.chrysogenum是1种常见的产铁载体真菌。而A. tubigensi、A. nomius及P. svalbardense菌株尚无产铁载体相关报道,可作为铁载体研究良好材料。
关键词: 铁载体 真菌 碱性环境
Screening siderophore activity of four strains from alkaline environment
Xiaolong Zhang, Yongxia Wang, Jiangyuan Zhao, Zhanggui Ding, Mengliang Wen, Minggang Li


Yunnan lnstitute of Microbiology, Yunnan University, Kunming 650091, Yunnan Province, China
Supported by the National Natural Science Foundation of China (31260012, 21162039, 21402169) and by the Talent Project inYunnan Province (2011CI001)
Abstract: [Objectives] Siderophore is a low molecular iron chelate produced by microorganisms. It has broad application prospects in medicine, environmental restoration, health food and other fields. According to the literature survey so far, no siderophore was found from alkaline environment eukaryotes. Therefore, screening of fungi with high siderophore activity is of great significance.[Methods] By chromium azure S coloration, we screened 99 fungi isolated from Cheng Hai (an alkaline lakes in Yunnan province) and Datun alkaline tailings (Gejiu, Yunnan province). By spectrophotometric detection, we investigated the strain capacity of siderophore and type of siderophore. By solid phase extraction, we investigated the siderophore enrichment effect. Based on electron microscopy morphologic observation and ITS gene phylogenetic tree construction, we identified the strain.[Results] Strains FEDT-866, FEDT-145, FECH-998 and FECH-595 were siderophore high-yield ones. Except for strain FEDT-866, the siderophore active substances were suitable for solid phase extraction (SPE). Strains FEDT-866 and FECH-998 belong to Aspergillus and have higher similarity with Aspergillus tubigensis and A. nomius, respectively. Strains FECH-595, FEDT-145 belong to Penicillium and have higher similarity with P. svalbardense and P. chrysogenum.[Conclusion] We isolated and identified four fungi for possible siderophore production.
Key words: siderophore fungi alkaline environment
金属离子是地球上绝大多数生命形式主要甚至必须的营养元素。以铁离子为代表,其对于生命体维持细胞内多种酶的组成和活性必不可少[1]。一般而言,铁在自然界并不缺乏,但大多数铁元素却以不溶解状态存在(氧化铁或氢氧化铁复合物形式),生物可利用性极低[2]。因此,为获取必须的铁元素,生命体进化出各自的解决手段。
20世纪50年代,人们发现微生物中存在一种小分子化合物,分子量一般界于500-1500 Da[3],其对Fe3+具有极高的亲和性。随着越来越多该功能化合物的发现,人们将这类具备Fe3+螯合性能的物质命名为铁载体(Siderophore)。该类物质存在于大多数微生物中,对微生物而言是一种重要资源。目前已知的铁载体化合物不过500来种[4]。根据其配位结构的特征,大致上可以被分为4种类型:异羟肟酸型(hydroxamaces)、儿茶酚型(catecholates)、羧酸盐型(carboxylates)和混合型(又称两性铁载体)。
相比于其他微生物天然化合物,微生物铁载体研究的空间还非常广阔。根据对近10年的文献调查,针对原核生物铁载体的研究占据了相当比例(占文献统计量的78%);针对真核微生物铁载体的研究只占了较小部分(占文献统计量的9%);而针对碱性环境真核微生物铁载体的研究目前尚处于空白。
另外,尽管“Siderophore”中文译名为“铁载体”。实际上,铁载体类化合物并非仅具备Fe3+螯合性能;研究显示,该类物质还可螯合锰、锌[5-6]、铅、汞、铬、镉等金属离子[7-9]。该类化合物在生物医药(比如白霉素和高铁霉素等)[10]、环境修复[11-13]、健康食品[14]等领域具有广泛的应用前景。
鉴于以上分析,我们前期选择从云南省碱性环境样品中分离真菌菌株,结合铬天青S染液显色原理和96孔板筛选手段,筛选产铁载体能力强的菌株。该工作为进一步开展碱性环境真菌铁载体研究奠定基础。
1 材料和方法 1.1 材料
1.1.1 试剂与仪器: 铬天青S (Chrome azurol S,CAS),十六氨基烷基溴化铵(HTDMA)及EDTA (乙二胺四乙酸),均购自中国医药集团上海化学试剂公司。Desferal (甲磺酸去铁胺)购自诺华制药。固相萃取柱AmberchromTM 161C (150 mg,1 mL管)购于美国Supelco公司。马铃薯为市售。其他试剂均为国产分析纯。LDZX-50KB立式压力蒸汽灭菌锅购于上海申安医疗器械厂;pHX-9272 MBE电热培养箱购于上海博迅实业有限公司医疗设备厂;SUKUN SKY-2102摇床购于上海国铪电器有限公司;LAMBDA 35 UV/Vis分光光度计购于美国PerkinElmer公司;自动化SPE萃取设备Rapid Trace SPE workstation购于美国Zymark公司。
1.1.2 菌株: 本文99株真菌分离自云南省碱性湖泊-程海(云南省永胜县100°39′35′′ E,26°35′27′′ N。泥样pH为8.85-9.05)以及个旧大屯碱性尾矿土壤(103°18′12′′ E,23°18′48′′ N。矿坝土样pH为8.64-8.93)。
1.1.3 培养基: (1) 斜面培养基(g/L):马铃薯200,蔗糖20,琼脂20,pH自然。配制过程中马铃薯去皮,切成块煮沸30 min,然后用纱布过滤。(2) 无铁查氏培养基(g/L):NaNO3 2.0,K2HPO4 1.0,KCl 0.5,MgSO4·7H2O 0.5,蔗糖30,pH自然。
1.1.4 铬天青S (Chrome azurol S,CAS )显色液: 称取60.5 mg铬天青S,溶解于50 mL去离子水中,然后加入10 mL Fe3+溶液(1mmol/L FeCl3·6H2O,10 mmol/L HCl),搅拌混匀,记为“A液”;其次再称取72.9 mg十六氨基烷基溴化铵(HTDMA)溶解于40 mL去离子水,加热使其充分溶解,记为“B液”;最后将A液与B液缓慢混合摇匀。阳性对照物为:EDTA (乙二胺四乙酸),其与铬天青S染液呈红色反应;Desferal (甲磺酸去铁胺),其与铬天青S染液呈黄色反应。
1.2 菌株筛选
1.2.1 初筛: 100支试管(规格为?15×150 mm)中分别倒入约5 mL的无铁查氏培养基,1.0×105 Pa灭菌20 min。待冷却至室温后,将99株活化的真菌分别接种在上述的试管中(未接种试管作为空白对照)。28 °C静置培养7 d,待试管液体培养基表面有大量菌丝生长及孢子出现时即可进行筛选。96孔板每孔中加入20 μL铬天青S染液,之后分别加入等体积培养液。加液过程须轻微摇晃使培养液与铬天青S染液充分混合,记录混合后颜色变为红色、紫色或黄色的培养液,将相对应菌株作为复筛菌株。未接种的无铁查氏培养基作为阴性对照。
1.2.2 复筛: 37支试管(规格为?15×150 mm)中分别倒入约5 mL的无铁査氏培养基,在1.0×105 Pa下灭菌20 min。冷却至室温,将初筛获得的36株真菌分别接种于上述试管中,未接种的试管做为空白对照。28 °C培养7 d。96孔板中每孔加入40 μL染液,之后分别加入等体积培养液。加液过程须轻微摇晃使培养液与铬天青S染液充分混合,记录混合后颜色变化,并且用秒表记录下颜色变化所需时间。颜色的深浅和变化所需时间长短能够间接反映菌株产铁载体螯合能力的大小(颜色越深、耗时越短则说明菌株产铁载体的活性越强)。故将反应用时最短、反应颜色深的菌株作为复筛入选菌株。未接种的无铁査式培养基作为阴性对照;以饱和EDTA溶液(与铬天青S染液显红色)和甲磺酸去铁胺溶液(与铬天青S染液显黄色)作为阳性对照。
1.3 复筛菌株铁载体初步定量测定 500 mL摇瓶中每瓶分别装入100 mL去铁查氏培养基,121 °C灭菌20 min,冷却至室温后接种复筛入选真菌菌株,28 °C、200 r/min培养5 d 。然后分别取5 mL培养液用0.22 μm微孔滤膜过滤除菌,之后与5 mL铬天青S染液振荡混匀,静止1 h后测定其OD680 (As),以去离子水为对照,用相同方法测定对照样品(未接菌株的无铁查氏液体培养基)的吸光值作为参比值(Ar),铁载体的浓度用铁载体活性单位(Siderophore unit,SU)表示。SU=[(Ar?As)/Ar]×100%,处理重复3次。SU值越大,表示铁载体活性越强。一般产铁载体能力较高的微生物其As/Ar要低于0.5。
1.4 复筛菌株铁载体的化学结构初步检测
1.4.1 异羟肟酸型铁载体氯化铁检测法(FeCl3 test)[15]: 1 mL滤液中加入1-5 mL 2%氯化铁溶液,红色或紫色出现表明测试样品中含有铁载体物质。用紫外分光光度计检测,如在420-450 nm之间出现吸收峰则说明存在异羟肟酸型铁载体。
1.4.2 儿茶酚型铁载体氯化铁检测法(FeCl3 test)[15]: 1 mL滤液中加入1 mL 2%氯化铁溶液,用紫外分光光度计检测,如在495 nm出现吸收峰则说明存在儿茶酚型铁载体。
1.4.3 羧酸型铁载体分光光度检测法(Spectropho- tometric test)[16]: 1 mL滤液中加入1 mL 250 mmol/L CuSO4溶液和2 mL pH 4.0醋酸盐缓冲液(847 mL 0.1 mol/L醋酸+153 mL 0.1 mol/L醋酸钠),用紫外分光光度计检测,如在190-280 nm之间出现吸收峰则说明存在羧酸型铁载体。
1.5 复筛菌株铁载体活性物质SPE富集处理 由于微生物铁载体物质在外周环境螯合金属离子,故一般存在于菌株培养液中。考虑多种因素,本研究采取固相萃取(SPE)方法对复筛菌株铁载体活性物质前处理方法进行预实验,以此初步了解铁载体活性物质基本化学性质,为后续化合物分离纯化工作提供依据。具体方法为:
1.5.1 固相萃取步骤: 首先用5 mL甲醇洗涤SPE柱(流速设置为5.0 mL/min);再用5 mL去离子水洗涤SPE柱(流速设置为5.0 mL/min)。之后,将摇瓶培养6 d后的培养液用滤纸过滤(摇瓶培养方法同1.3),取25 mL滤液用于SPE处理(进样流速设置为1.5 mL/min);过柱液单独收集(编号为“菌号+SR”),4 °C保藏备用。SPE柱进一步用10 mL去离子水洗涤(流速设置为10.0 mL/min),最后用5 mL甲醇将SPE柱上吸附样品洗下(流速设置为0.5 mL/min),甲醇洗脱液单独收集(编号为“菌号+SE”),4 °C保藏备用。
1.5.2 对照试验: 摇瓶培养6 d后培养液用滤纸过滤(摇瓶培养方法同1.3),取25 mL滤液用乙酸乙酯萃取3次。乙酸乙酯萃取相合并减压蒸干,用5 mL甲醇溶解(编号为“菌号+E”),4 °C保藏备用;萃余液减压蒸去残余乙酸乙酯,滤纸过滤(编号为“菌号+R”),4 °C保藏备用。
以上处理样分别采用铬天青S染液检测。方法同1.2.1。
1.6 复筛菌株的初步分类鉴定
1.6.1 菌株的电镜观察: 将菌株制备孢子悬液,然后取200 μL均匀涂布到已制备的PDA平板上;之后在平板上以30-45°角斜插入已灭菌的盖玻片,平板在28 °C培养15 d,待培养基表面有大量着生孢子的菌丝蔓延生长至盖玻片上即可停止培养。用镊子小心将附着有菌丝生长的盖玻片取出,放置于灭菌的?105 mm空置培养皿内,在室温下充分干燥5 d后,进行菌丝体表面喷金,即可进行扫描电镜观察(电子显微镜的型号为:Quanta 200,FEI公司,美国)。
1.6.2 ITS基因的扩增与测序: 取适量3-5 mL培养物,13000 r/min离心1 min,弃培养基。加入真菌DNA提取裂解液300 μL。涡旋起沉淀,65 °C水浴30 min。加入等体积的氯仿:异戊醇(24:1),涡旋混匀,13000 r/min离心5 min。取上清,加入等体积的异丙醇,混匀,13000 r/min离心5 min。弃上清,加入70%乙醇混匀,13000 r/min离心1 min。弃乙醇,倒置离心管,晾干。加入30 μL ddH2O,溶解DNA。即可进行下游PCR扩增或者-20 °C保存。其中,ITS基因扩增PCR反应体系组成为:5 μL 10×KOD buffer;5 μL 2 mmol/L dNTPs;1 μL Genomic DNA (100 ng/μL);1 μL Forward Primer (10 μmol/L);1 μL Reverse Primer (10 μmol/L);1 μL KOD DNA Polymerase (5 U/μL);36 μL ddH2O。扩增程序为:94 °C 3 min;94 °C 30 s,58 °C 30 s,72 °C 3 min,35个循环;72 °C 10 min。
PCR产物用1%琼脂糖凝胶电泳进行检测,再扩增1个50 μL体系的PCR后进行产物回收。PCR产物回收程序为:加入4倍体积(800 μL)的Buffer CP到1.5 mL离心管(含有PCR反应体积200 μL);剧烈振荡,短暂离心;把吸附柱放在收集管里;混合物转入吸附柱(每次750 μL,离心后,倒掉废液,再把剩余混合物转入吸附柱离心);13000 r/min离心1 min,弃废液;加入700 μL洗脱液,13000 r/min离心1 min,弃废液;加入500 μL洗脱液,13000 r/min离心1 min,弃废液;将吸附柱放入收集管,空管13000 r/min离心2 min,以去除吸附柱上的乙醇;把吸附柱转到1个新的1.5 mL离心管,在吸附柱中心加入30 μL ddH2O,室温放置1 min,13000 r/min离心1 min,滤液即是回收的DNA,PCR产物连接T载体。PCR产物T载体连接体系为:4 μL 5×Reaction Buffer;10 μL PCR Product;2 μL pTZ57R/T Vector;1 μL T4 DNA Ligase;3 μL ddH2O。PCR产物T载体连接程序:轻轻摇匀,短暂离心,22 °C放置1 h,连接产物直接转化。取出化学感受态细胞TOP10,放于冰上解冻。加入连接产物,冰上放置30 min。将管放于42 °C水浴90 s,不可摇动。快速将管移到冰浴上2 min,室温放置5 min。每管加800 μL没有抗生素的LB液体培养基,37 °C振荡45 min复苏。8000 r/min离心2 min,将上清液去掉800 μL,重悬后均匀涂布到Amp抗性平板上。平板放置于室温吹干,倒置于37 °C培养箱,培养12-16 h长出菌落。进行菌落PCR鉴定和测序。
1.6.3 ITS序列的分析: 测得的DNA序列经NCBI (National Center for Biotechnology Information) BLAST引擎搜索后获取相关种属的ITS基因序列,用ClustalX 1.8软件进行排列。系统发育分析时排除碱基缺失位点,用邻接法(Neighbor-Joining analysis)构建系统发育树。距离矩阵按照Kimura’s双参数模型进行计算[17],Bootstrap检验进行1000次取样。
2 结果和分析 2.1 产铁载体菌株筛选-初筛 根据铬天青S染液特有的颜色反应,从99株真菌中筛选出36株有颜色变化的真菌,其中24株颜色反应为红色或橘红色,7株为黄色,5株为紫色,因此将这36株真菌作为复筛目标菌株。
2.2 产铁载体菌株筛选-复筛 如表1所示,根据各菌株培养液与铬天青S染液混合后颜色变化的深浅和所需时间,菌株FECH-595、FECH-998、FEDT-145和FEDT-866产铁载体的活性最强,其中菌株FECH-595和FEDT-866与CAS染液反应后呈现鲜红色,颜色变化所需时间分别为3 s (以EDTA对照为参考);菌株FECH-998和FEDT-145与铬天青S染液反应后呈现黄色,颜色变化所需时间分别为4 s (以甲磺酸去铁胺对照为参考)。因此选择上述4株复筛菌作为后续研究对象。
表 1. 产铁载体真菌96孔板复筛实验记录 Table 1. The re-screening record for siderophores producing fungi by using 96-well plate
96 well plateposition | Strains code | The color ofCAS reaction | CAS reactiontime/s | 96 well plateposition | Strains code | The color ofCAS reaction | CAS reactiontime/s | |
A5 | FEDT-031 | Red | 9 | C9 | FECH-971 | Orange | 5 | |
B5 | FECH-595 | Red | 3 | D9 | FECH-954 | Red | 5 | |
C5 | FECH-356 | Red | 12 | E9 | FEDT-092 | Purple | 18 | |
D5 | FECH-406 | Yellow | 13 | F9 | FECH-244 | Red | 7 | |
E5 | FECH-129 | Red | 11 | G9 | FECH-362 | Purple | 16 | |
F5 | FECH-378 | Yellow | 20 | H9 | FECH-473 | Red | 6 | |
G5 | FECH-140 | Purple | 20 | A11 | FEDT-045 | Orange | 8 | |
H5 | FECH-948 | Orange | 7 | B11 | FECH-357 | Yellow | 15 | |
A7 | FECH-410 | Red | 9 | C11 | FECH-325 | Red | 6 | |
B7 | FECH-420 | Red | 7 | D11 | FECH-221 | Red | 6 | |
C7 | FECH-135 | Red | 9 | E11 | FECH-464 | Red | 8 | |
D7 | FECH-998 | Yellow | 4 | F11 | FEDT-145 | Yellow | 4 | |
E7 | FECH-940 | Purple | 5 | G11 | FEDT-047 | Orange | 6 | |
F7 | FECH-461 | Orange | 7 | H11 | FEDT-005 | Yellow | 6 | |
G7 | FECH-957 | Red | 18 | A12 | FEDT-014 | Purple | 7 | |
H7 | FECH-462 | Red | 8 | B12 | FECH-148 | Red | 7 | |
A9 | FECH-407 | Yellow | 25 | C12 | FEDT-076 | Orange | 12 | |
B9 | FEDT-049 | Red | 6s | D12 | FEDT-866 | Red | 3 | |
Among the 96 well plates, the corresponding samples as A1, C1, E1 and G1 were composed with solution of “2% Desferal + CAS”; A3,C3, E3 and G3 were composed with solution of “EDTA+ CAS” (CAS chromogenic reaction time=2s); B1, D1, F1, H1, B3, D3, F3 andG3 were CAS blank solution |
表选项
2.3 复筛菌株铁载体初步定量测定 如表2所示,所选4株真菌的SU均大于0.5,而As/Ar均小于0.5,这说明了所选4株真菌均为高产铁载体菌株。
表 2. 阳性菌株产铁载体的定量测定 Table 2. The quantitative determination ofsiderophores produced by positive fungal strains
Strains | OD680 | The value of SU | The value of SU |
Blank | 3.843 (Ar) | - | - |
FECH-595 | 0.575 (As) | 0.850 | 0.150 |
FECH-998 | 1.465 (As) | 0.619 | 0.381 |
FEDT-145 | 1.548 (As) | 0.597 | 0.403 |
FEDT-866 | 1.254 (As) | 0.674 | 0.326 |
表选项
2.4 复筛菌株铁载体类型初步判断 如表3所示,菌株FECH-595所产铁载体类型为羧酸型铁载体,其它3株真菌所产铁载体既有异羟肟酸型铁载体又有羧酸型铁载体。
表 3. 阳性菌株产铁载体的化学结构检测 Table 3. The chemical structure detection ofsiderophores produced by positive fungal strains
Strains | FeCl3 test | Spectrophotometrictest | |
Peak at 425–450 nm hydroxamaces type | Peak at 495 nm catecholates type | Peak at 190–280 nm carboxylates type | |
FECH-595 | - | - | + |
FECH-998 | + | - | + |
FEDT-145 | + | - | + |
FEDT-866 | + | - | + |
+: indicates absorption peak; -: indicates no absorption peak. |
表选项
2.5 复筛菌株铁载体活性物质富集处理 由表4可知,菌株FEDT-145和菌株FECH-595培养液中的铁载体活性成分既可以被树脂相充分吸附,亦可用“液-液”萃取手段被乙酸乙酯相所提取。该现象说明这2株菌培养液中铁载体活性成分极性相似,可能存在极性中等化合物;而菌株FEDT-866培养液中的活性成分则完全不能用这2种方法有效富集。表明该菌株活性物质极性较大,必须选择其他大极性吸附材料进行富集。而菌株FECH-998,2种方法均只能达到部分富集的效果。可能在培养体系中存在多种极性差异较大的活性物质。
表 4. 铁载体活性物质SPE富集处理效果比较 Table 4. The siderophore activity substances SPEenrichment effect comparison of positive fungal strains
Strains | R | SR | E | SE |
FECH-595 | - | - | +++ | +++ |
FECH-998 | ++ | ++ | +++ | +++ |
EDT-145 | + | - | +++ | +++ |
FEDT-866 | +++ | +++ | + | + |
+: indicates CAS coloration positive;-: indicates CAS colorationnegative. |
表选项
2.6 复筛菌株初步分子生物学鉴定 针对菌株FEDT-866,其ITS DNA序列经NCBI (National Center for Biotechnology Information) BLAST搜索后获取相关种属的ITS基因序列,用ClustalX 1.8软件进行排列。系统发育分析时排除碱基缺失位点,用邻接法(Neighbor-Joining analysis)构建系统发育树。由系统进化树可见,菌株FEDT-866与标准菌株Aspergillus tubigensisCBS 134.48 ITS序列最大相似性达到99.65%(图1)。扫描电镜揭示,菌株FEDT-866呈现曲霉属真菌典型特征,分生孢子梗由1根直立的菌丝形成,菌丝的末端形成球状膨胀(顶囊)。菌株分生孢子梗及孢子粗糙有棘(图2)。在自然光下观察,该菌株分生孢子呈深褐绿色。综合以上信息,表明菌株FEDT-866属于曲霉属菌株,其与塔宾曲霉Aspergillus tubigensis相似性较高。
![]() |
图 1. 铁载体活性真菌FEDT-866基于ITS基因序列构建的系统发育树 Figure 1. The phylogenetic tree of fungal strain FEDT-866 with siderophore activities based on ITS gene sequences.The tree rooted was constructed by Neighbor-Joining method with bootstrap values calculated from 1000 resampling.The numbers at each node that indicated the percentage of bootstrap supporting. The numbers in the brackets aftereach strain name are ITS gene sequence accession numbers in GenBank. Bar 0. 01 at the bottom is the sequencedivergence. |
图选项 |
![]() |
图 2. 铁载体真菌菌株电子显微镜形态(放大倍数1000–3000×) Figure 2. The electron microscope of fungal strains with siderophore activities (magnification of 1000–3000×). A:FEDT-866; B: FEDT-145; C: FECH-998; D: FECH-595. |
图选项 |
菌株FECH-595,其ITS DNA序列经BLAST搜索后获取相关种属的ITS基因序列,用 ClustalX 1.8软件进行排列,用邻接法构建系统发育树。结果显示,菌株FECH-595与Penicillium svalbardense CBS:122416的序列最大相似性达到99.46% (图3)。扫描电镜观察表明,菌株FECH-595呈现青霉属真菌典型特征(图2),顶端不形成膨大的顶囊,其分生孢子梗经过多次分枝,产生几轮对称或不对称的小梗,形如扫帚的帚状体,分生孢子呈球形,光滑。在自然光下观察,该菌株分生孢子呈蓝灰白色。综合以上信息,推断菌株FECH-595属于青霉属菌株,与Penicillium svalbardense相似性较高。
![]() |
图 3. 铁载体活性真菌FECH-595基于ITS基因序列构建的系统发育树 Figure 3. The phylogenetic tree of fungal strain FECH-595 with siderophore activities based on ITS gene sequences.The tree rooted was constructed by Neighbor-Joining method with bootstrap values calculated from 1000 resampling.The numbers at each node that indicated the percentage of bootstrap supporting. The numbers in the brackets aftereach strain name are ITS gene sequence accession numbers in GenBank. Bar 0.01 at the bottom is the sequencedivergence. |
图选项 |
菌株FECH-998,其ITS DNA序列经NCBI BLAST搜索后获取相关种属的ITS基因序列,用 ClustalX 1.8软件进行排列,用邻接法构建系统发育树。结果显示,菌株FECH-998与Aspergillus nomiusNRRL13137的序列最大相似性达到100%(图4)。扫描电镜观察结果,菌株FECH-998呈现曲霉属真菌典型特征(图2),自然光下观察该菌株分生孢子呈黄绿色。综合以上信息,推断菌株FECH-998属于曲霉属菌株,其与集峰曲霉(Aspergillus nomius)相似性较高。
![]() |
图 4. 铁载体活性真菌FECH-998基于ITS基因序列构建的系统发育树 Figure 4. The phylogenetic tree of fungal strain FECH-998 with siderophore activities based on ITS gene sequences.The tree rooted was constructed by Neighbor-Joining method with bootstrap values calculated from 1000 resampling.The numbers at each node that indicated the percentage of bootstrap supporting. The numbers in the brackets aftereach strain name are ITS gene sequence accession numbers in GenBank. Bar 0.002 at the bottom is the sequencedivergence. |
图选项 |
菌株FEDT-145,其ITS DNA序列经NCBI BLAST搜索后获取相关种属的ITS基因序列,用 ClustalX 1.8软件进行排列,用邻接法构建系统发育树。结果显示,菌株FEDT-145与Penicillium chrysogenum G6的序列最大相似性达到99.5% (图5)。扫描电镜观察菌株FEDT-145呈现青霉属真菌典型特征(图2),顶端不形成膨大的顶囊,分生孢子呈球形,表面有棘刺。自然光下观察该菌株分生孢子呈暗黄色。综合以上信息,推断菌株FEDT-145属于青霉属菌株,其与产黄青霉Penicillium chrysogenum相似性较高。
![]() |
图 5. 铁载体活性真菌FEDT-145基于ITS基因序列构建的系统发育树 Figure 5. The phylogenetic tree of fungal strain FEDT-145 with siderophore activities based on ITS gene sequences.The tree rooted was constructed by Neighbor-Joining method with bootstrap values calculated from 1000 resampling.The numbers at each node that indicated the percentage of bootstrap supporting. The numbers in the brackets aftereach strain name are ITS gene sequence accession numbers in GenBank. Bar 0. 01 at the bottom is the sequencedivergence. |
图选项 |
3 讨论 本文将铬天青S染液检测法与96孔板法相结合来作为对产铁载体真菌的筛选,这种方法操作简单,快速,试验结果清楚明确,并且易于记录与保存,特别适合于大批量的筛选。
真菌主要产生异羟肟酸型铁载体和羧酸型铁载体,本研究所检测的4株真菌印证了这点。除了菌株FECH-595以外,其它3株真菌既可以产生异羟肟酸型铁载体又可以产生羧酸型铁载体,这表明同一株菌可以产生多种类型的铁载体。另外,有文献报道认为羧酸型铁载体比异羟肟酸型铁载体对铁的螯合能力更强[18],本研究的4株真菌都产生羧酸型铁载体,这可能是真菌为适应碱性环境下可溶性铁更为缺乏的结果。
经分子生物学鉴定,菌株FEDT-866和FECH-998同属于曲霉属,分别与塔宾曲霉(A. tubigensis)和集峰曲霉(A. nomius)相似性较高。曲霉属真菌是一类常见的产铁载体微生物,如A. ochraceous和杂色曲霉(A. versicolor)[19],但尚未检索到有关A. tubigensis和A. nomius产铁载体的报道;菌株FECH-595和FEDT-145同属于青霉属,分别与P. svalbardense和产黄青霉(P. chrysogenum)相似性较高。青霉属真菌也是一类常见的产铁载体微生物,如P. citrinum、P. funiculosum[19]。P. chrysogenum也可产生多种类型铁载体,如ferrichrome[20]和fusarinine 系列化合物[21-22],但尚未检索到有关P. svalbardense产铁载体的报道。故本文筛选获得的高活性菌株可作为相关铁载体研究的良好材料。
对于铁载体活性物质的富集,鉴于传统的有机溶剂萃取法大量使用具有毒性的有机溶剂,本文探索采用操作安全简便快速的固相萃取(Solid-Phase Extraction,简称SPE)法对铁载体活性物质进行富集处理。结果表明,菌株FEDT-145、FECH-595 和FECH-998铁载体活性成分可以完全或部分被SPE树脂吸附富集。由于Amberchrom TM 161C填料对于中等极性有机化合物吸附能力很强,说明以上3株菌株培养液中铁载体活性成分极性相似。而对于菌株FEDT-866,其铁载体活性成分极性较大,还须进一步摸索富集条件。这些工作为后续代谢物化学研究奠定了良好基础。
与细菌铁载体相比,真菌铁载体的相关知识相对缺乏。但越来越多证据显示,真菌铁载体在医疗[23-26]、植物营养[27-30]、植物保护[31-36]及环境保护[37]等方面都具有重要影响。开展相应真菌资源的收集、筛选、整理和保存具有重要意义。
参考文献
[1] | Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 2007, 71(3): 413-451. |
[2] | Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annual Review of Microbiology, 2000, 54: 881-941. |
[3] | Fang T, Li DJ, Yu LH. Advance of the siderophors produced by marine microorganisms. Marine Sciences, 2007, 31(10): 87-91. 方涛, 李道季, 余立华. 海洋微生物铁载体的研究. 海洋科学, 2007, 31(10): 87-91. |
[4] | Huang TT, Lin SJ, Deng ZX. Recent advances in mechanism of siderophore biosynthesis in actinomycetes. Microbiology China, 2011, 38(5): 765-773. 黄婷婷, 林双君, 邓子新. 放线菌中铁载体生物合成机制研究进展. 微生物学通报, 2011, 38(5): 765-773. |
[5] | Szabó O, Farkas E. Characterization of Mn (II) and Mn (III) binding capability of natural siderophores desferrioxamine B and desferricoprogen as well as model hydroxamic acids. Inorganica Chimica Acta, 2011, 376(1): 500-508. |
[6] | Barreto WJ, Ando RA, Santos PS, Silva WP. Reaction of a model siderophore with Ni (II), Co (II) and Zn (II) in aqueous solution: kinetics and spectroscopy. Journal of Inorganic Biochemistry, 2008, 102(2): 359-363. |
[7] | Mishra B, Haack EA, Maurice PA, Bunker BA. A spectroscopic study of the effects of a microbial siderophore on Pb adsorption to kaolinite. Chemical Geology, 2010, 275(3/4): 199-207. |
[8] | Mishra B, Haack EA, Maurice PA, Bunker BA. Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution. Environmental Science & Technology, 2009, 43(1): 94-100. |
[9] | Braud A, Jézéquel K, Lebeau T. Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. Journal of Hazardous Materials, 2007, 144(1/2): 229-239. |
[10] | Dubey AP, Sudha S, Parakh A. Deferasirox: the new oral iron chelator. Indian Pediatrics, 2007, 44(8): 603-607. |
[11] | Dimkpa CO, Merten D, Svato? A, Büchel G, Kothe E. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 2009, 41(1): 154-162. |
[12] | Rajkumar M, Ae N, Prasad MNV, Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28(3): 142-149. |
[13] | Nair A, Juwarkar AA, Singh SK. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water, Air, and Soil Pollution, 2007, 180 (1/4): 199-212. |
[14] | Pócsi I, Jeney V, Kertai P, Pócsi I, Emri T, Gyémánt G, Fésüs L, Balla J, Balla G. Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Molecular Nutrition & Food Research, 2008, 52(12): 1434-1447. |
[15] | Neilands JB. Microbial iron compounds. Annual Review of Biochemistry, 1981, 50: 715-731. |
[16] | Shenker M, Oliver I, Helmann M, Hadar Y, Chen Y. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. Journal of Plant Nutrition, 1992, 15(10): 2173-2182. |
[17] | Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16(2): 111-120. |
[18] | Baakza A, Vala AK, Dave BP, Dube HC. A comparative study of siderophore production by fungi from marine and terrestrial habitats. Journal of Experimental Marine Biology and Ecology, 2004, 311(1): 1-9. |
[19] | Holinsworth B, Martin JD. Siderophore production by marine-derived fungi. BioMetals, 2009, 22(4): 625-632. |
[20] | Charlang G, Ng B, Horowitz NH, Horowitz RM. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Molecular and Cellular Biology, 1981, 1(2): 94-100. |
[21] | Charlang G, Horowitz RM, Lowy PH, Ng B, Poling SM, Horowitz NH. Extracellular siderophores of rapidly growing Aspergillus nidulans and Penicillium chrysogenum. Journal of Bacteriology, 1982, 150(2): 785-787. |
[22] | H?rdt W, R?mheld V, Winkelmann G. Fusarinines and dimerum acid, mono-and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. BioMetals, 2000, 13(1): 37-46. |
[23] | Par RB, Gokarn K. Siderophores and pathogenecity of microorganisms. Bioscience and Technology, 2010, 1(3): 127-134. |
[24] | Nevitt T. War-Fe-re: iron at the core of fungal virulence and host immunity. BioMetals, 2011, 24(3): 547-558. |
[25] | Yasmin S, Alcazar-Fuoli L, Gründlinger M, Puempel T, Cairns T, Blatzer M, Lopez JF, Grimalt JO, Bignell E, Haas H. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): E497-E504. |
[26] | Raymond-Bouchard I, Carroll CS, Nesbitt JR, Henry KA, Pinto LJ, Moinzadeh M, Scott JK, Moore MM. Structural requirements for the activity of the MirB ferrisiderophore transporter of Aspergillus fumigatus. Eukaryotic Cell, 2012, 11(11): 1333-1344. |
[27] | Haselwandter K. Structure and function of siderophores produced by mycorrhizal fungi. Mineralogical Magazine, 2008, 72(1): 61-64. |
[28] | Haselwandter K, Passler V, Reiter S, Schmid DG, Nicholson G, Hentschel P, Albert K, Winkelmann G. Basidiochrome-a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia spp.. BioMetals, 2006, 19(3): 335-343. |
[29] | Haselwandter K, H?ninger G, Ganzera M. Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus. BioMetals, 2011, 24(1): 153-157. |
[30] | Haselwandter K, Haninger G, Ganzera M. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. BioMetals, 2013, 26(6): 969-979. |
[31] | Johnson LJ, Steringa M, Koulman A, Christensen M, Johnson RD, Voisey CR, Bryan G, Lamont I, Rasmussen S. Biosynthesis of an extracellular siderophore is essential for maintenance of mutualistic endophyte-grass symbioses//Popay AJ, Thom ER. 6th International Symposium on Fungal Endophytes of Grasses. Dunedin, New Zealand: New Zealand Grassland Association, Endophyte Symposium, 2007: 177-179. |
[32] | Koulman A, Lee TV, Fraser K, Johnson L, Arcus V, Lott JS, Rasmussen S, Lane G. Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichlo? festucae in culture and endophyte-infected Lolium perenne. Phytochemistry, 2012, 75(6): 128-139. |
[33] | Kajula M, Tejesvi MV, Kolehmainen S, M?kinen A, Hokkanen J, Mattila S, Pirttil? AM. The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biology, 2010, 114(2/3): 248-254. |
[34] | Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott, JS, Arcus, VL. Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. The Journal of Biological Chemistry, 2010, 285(4): 2415-2427. |
[35] | Liu MJ, Zhang XT, Zhao ZW. Advances in the research of dark septate endophytes. Mycosystema, 2009, 28(6): 888-894. 刘茂军, 张兴涛, 赵之伟. 深色有隔内生真菌(DSE)研究进展. 菌物学报, 2009, 28(6): 888-894. |
[36] | Bartholdy BA, Berreck M, Haselwandter K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. BioMetals, 2001, 14(1): 33-42. |
[37] | Haselwandter K, Winkelmann G. Siderophores of symbiotic fungi//Varma A, Chincholkar SB. Microbial Siderophores. Berlin Heidelberg: Springer, 2007, 12: 91-103. |