清华大学 汽车安全与节能国家重点实验室, 北京 100084
收稿日期:2021-02-20
基金项目:国家重点研发计划项目(2016YFB0101305);国家自然科学基金项目(21975143)
作者简介:裴普成(1965-), 男, 教授。E-mail: pchpei@mail.tsinghua.edu.cn
摘要:质子交换膜(PEM)燃料电池的金属双极板在成本和加工成形方面具有优势,但是其易腐蚀的特点也影响了燃料电池的导电性和耐久性。该文从金属双极板及其涂层导电性和耐久性出发,系统总结了相关研究进展。首先根据燃料电池的市场需求,分析了应用金属双极板的优势;对金属双极板及其涂层导电性和耐久性的典型测试方法进行了讨论,并对近期文献中出现的多种涂层进行了评价,发现除合金涂层外大部分涂层能满足美国能源部2020目标;分析了影响金属双极板及其涂层导电性和耐久性的工作环境和工作状况;最后,从测试方法、涂层研究和影响因素3个方面展望了未来的研究方向。该文综述了金属双极板及其涂层的研究进展,对将其更有效、更持久地应用于燃料电池电堆中具有重要意义。
关键词:质子交换膜燃料电池金属双极板涂层导电性耐久性
Advances in metal bipolar plates and coatings for PEM fuel cells
PEI Pucheng, LI Zizhao, REN Peng, CHEN Dongfang, WANG Xizhong
Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Abstract: Metal bipolar plates for proton exchange membrane (PEM) fuel cells have price and processing advantages, but easily corrode which reduces the fuel cell electrical conductivity and durability. This paper reviews recent advances related to the electrical conductivity and durability of metal bipolar plates and their coatings for fuel cells. The review starts from the market demand for PEM fuel cell stacks and the advantages of using metal bipolar plates in PEM fuel cells. Then, the typical metal bipolar plate and coating testing methods are described. Most coatings besides alloy coatings meet the US Department of Energy 2020 target. Then, this paper describes the environmental factors and working conditions that influence the plate electrical conductivity and durability. Finally, this study identifies future research prospects related to test methods, coatings research, and key factors. This paper reviews key advances in metal bipolar plates and their coatings for improving their efficiency and durability for fuel cell stacks.
Key words: proton exchange membrane (PEM) fuel cellsmetal bipolar platescoatingselectrical conductivitydurability
目前,燃料电池汽车(fuel cell electric vehicle, FCEV)被认为是最有前途的、绿色的和清洁的可替代能源汽车[1-3]。作为FCEV的动力源,质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)将氢气化学能直接转化为电能,产物仅有水,较高的能量转换效率、无污染等优点使其备受关注。虽然PEMFC有诸多优点,但耐久性和成本这两个主要问题一直阻碍着它的商业化应用[4-5]。从某种程度上来说,耐久性问题与成本问题是相互关联的,在同等成本的情况下提高PEMFC耐久性,平均使用成本自然会减少;同时,当需要的总功率一定时,提升PEMFC的发电性能,也能减少它的使用量,从而降低成本。金属双极板及其涂层作为主要组件,对PEMFC的发电性能与耐久性有着重要影响,研究金属双极板及其涂层的导电性与耐久性对促进燃料电池的商业化应用具有重要意义。
金属双极板及其涂层易受到pH值[6-8]、温度[9-11]、电势[12-13]等多种因素的影响,这些因素又与工作环境和工作状况相关。金属双极板及其涂层在PEMFC工作环境下存在易腐蚀的缺点,这对PEMFC的耐久性和导电性有不利影响。研究表明,如图 1所示,PEMFC的工作环境恶劣:高湿度[12-16]、高电势[17, 18]、温度分布不均匀[19-21]。同时,PEMFC的工作状况复杂,在实际的车辆应用中,燃料电池主要经历4种工况:启/停工况、怠速工况、高负载工况和变载工况。工况的变化可能会导致反应气体不足,而反应气体不足和启/停工况则会带来高电势[22-26]。此外,PEMFC在运行中偶尔也会发生控制故障,导致膜的干燥或水淹现象发生[27-33]。研究燃料电池工作环境和工作状况下金属双极板的导电性和耐久性至关重要。
图 1 (网络版彩图)PEMFC工作环境及工作状况对金属双极板的影响 |
图选项 |
本文聚焦于金属双极板及其涂层的导电性和耐久性,综述了相关研究进展。首先简要概述了近年来PEMFC电堆的产品市场,并根据燃料电池制造商的选择指出了研究金属双极板及其涂层的重要性,对涂层进行了分类;然后,讨论了测试方法,对涂层进行了比较;接下来揭示了工作环境和工作状况对金属双极板及其涂层的导电性和耐久性有显著影响,阐述了各因素所造成的影响;最后提出了未来的研究方向。
1 双极板的类型与涂层双极板是PEMFC电堆的重要组件,约占整体70%的质量和30%的价格[34]。根据双极板材料的不同可以分为石墨双极板[35]、金属双极板[35-39]和复合双极板[35, 38, 40-41]。石墨及其复合材料脆性大、渗气性高、成本较高,相比之下,金属双极板强度更高,具有更好的成形性、抗冲击性和较低的渗气性。图 2整理了部分国内外制造商的车用PEMFC电堆的体积功率密度及其双极板类型[42-55]。根据适用的车型和功率不同,可将PEMFC电堆分为高功率、中功率、低功率3类。图 2中的大部分电堆都可以实现美国能源部(Department of Energy, DOE)2020年的目标(2.25 kW/L,下文简称为DOE 2020目标),少数不能达到目标的是较早期的产品。例如,Hyundai-100 kW的电堆于2014年首次推出,并应用于Hyundai ix35 FCEV和Tucson FCEV中;随着产品的迭代升级,2018年Hyundai Nexo使用的Hyundai-95 kW电堆的体积功率密度从1.65 kW/L提高到3.1 kW/L[48]。金属双极板因其在超薄状态下的成形性能优于其他材料,在高功率电堆中得到了广泛应用,而石墨双极板和复合双极板一般用于中、低功率电堆中。
图 2 (网络版彩图)部分车用PEMFC电堆的体积功率密度及其双极板类型 |
图选项 |
常用的金属双极板材料包括不锈钢、铝合金、钛合金、泡沫金属等。在众多金属材料中,不锈钢因其良好的机械性能和较低的成本得到了广泛应用。虽然不同不锈钢中元素的比例可能不同,但是元素种类是大致相同的,主要包括Fe、Ni、Mn、Cr、Cu、Mo等金属元素,以及C、N、P、S、Si等非金属元素。金属双极板的导电性和耐久性受到表面形貌和结构的影响。在恶劣的工作环境中,金属双极板可能发生表面腐蚀和钝化。由于钝化膜能够保护膜下金属不受进一步的腐蚀,因此许多早期的PEMFC直接使用不锈钢、Al、Ti、Ni等容易形成钝化膜的材料作为双极板[39-41, 56-57]。但是,钝化膜改变了双极板和扩散层的表面形貌[58],导致界面接触电阻(interface contact resistance, ICR)增大,会降低输出功率,且ICR随钝化膜厚度的增大而增大[59],因此目前的研究主要集中在金属双极板的涂层上[38-39, 57, 60-63]。根据涂层的元素组成,涂层可分为金属涂层、非金属涂层和复合涂层。金属涂层包括金属氮化物涂层、金属碳化物涂层、金属氧化物涂层以及其他金属涂层(如贵金属涂层、合金涂层等)[62, 64]。金属涂层具有优良的导电性和化学稳定性,但有些涂层的成本较高,如贵金属涂层,如今已较少使用;非金属涂层包括石墨基涂层和导电聚合物涂层,它们具有制备简单、成本低的特点,但有些涂层也存在耐蚀性差和易脱落的问题[64-69];复合涂层结合了金属涂层和非金属涂层的优点,在具有一定耐蚀性的基础上,可以保持良好的导电性,但是掺杂的金属离子也会影响涂层的表面微观结构。涂层加工方法可以分为电镀、化学镀、气相沉积法、热处理法、离子注入法和喷涂法等[57, 70]。对相同成分的涂层采用不同的方法进行处理,导电性和耐久性会受到不同的影响。
2 金属双极板及其涂层的测试方法与结果根据金属双极板及其涂层的ICR、腐蚀电流和腐蚀电势,能够比较它们的优劣。在PEMFC的可逆电压损失中,Ohm损失是降低导电性的一个重要因素,而因ICR造成的损失又占其中很大的一部分[58]。从影响PEMFC导电性的角度来看,需要考虑金属双极板的ICR;从金属双极板耐久性的角度来看,在PEMFC中,工作环境比较恶劣,一般用腐蚀电流密度和腐蚀电势表征涂层的耐久性。
2.1 ICR测量方法PEMFC的等效电路和Ohm内阻图如图 3所示。Ohm内阻Rm包括本体电阻(双极板电阻RBP、气体扩散层电阻RGDL、催化层电阻RCL、质子膜电阻RPEM)和接触电阻(阳极侧双极板/气体扩散层电阻RBP-GDLA、气体扩散层/催化层电阻RGDL-CL、催化层/质子膜电阻RCL-PEM、阴极侧双极板/气体扩散层电阻RBP-GDLC)。图 3中Rct是电荷转移电阻,ZW是Warburg阻抗,Cdl是双电层电容。在本文中,金属双极板的ICR为RBP-GDLA+RBP-GDLC,约占PEMFC总内阻的55%[71]。
图 3 PEMFC的等效电路和Ohm内阻图 |
图选项 |
ICR的测量方法有原位测量法和非原位测量法。非原位测量法如图 4a所示,将金属双极板样品放置于两个镀金铜板中,施加一定的压力(DOE标准是140 N/cm2), 施加电流,测量电压,由式(1)可求得金属双极板的ICR,
${\rm{ICR}} = \frac{U}{I} - 2{R_{{\rm{Cu}}}} - 2{R_{{\rm{GDL}}}} - {R_{{\rm{BP}}}} - 2{R_{{\rm{Cu}} - {\rm{GDL}}}}.$ | (1) |
图 4 (网络版彩图)双极板ICR的测量方法[72-74] |
图选项 |
原位测量法如图 4b所示,将一根测量金线与双极板焊接在一起,另外一根测量金线插入气体扩散层(gas diffusion layer, GDL)中,在PEMFC工作过程中测量相应的电压和电流,由式(2)可求得金属双极板的ICR,
${\rm{ICR}} = \frac{U}{I}.$ | (2) |
2.2 腐蚀电流密度和腐蚀电势测量方法较低的腐蚀电流密度和较高的腐蚀电势表明金属双极板具有良好的耐蚀性。将打磨好的样品作为工作电极,置于酸性环境中,采用电化学工作站,利用动电位(常用扫描速率为1 mV/s)能够得到如图 5所示的极化曲线,可以测定腐蚀电势,并通过外推得到腐蚀电流密度[70]。
图 5 (网络版彩图)样品极化曲线[70] |
图选项 |
恒电位极化实验后获得的工作电势下的腐蚀电流密度用于衡量金属双极板的长期稳定性。在电势U=+0.6 V下的电流密度为阴极电势下的腐蚀电流密度,电势U=-0.1 V下的电流密度则为阳极电势下的腐蚀电流密度。恒电位极化实验的环境是将样品浸泡于模拟PEMFC阴极或阳极环境中(H2SO4+HF,70 ℃左右,模拟阳极环境鼓入氢气在-0.1 V进行极化,模拟阴极环境鼓入空气在+0.6 V进行极化),极化时间从1 h到120 h不等,直至电流密度稳定为止。研究表明[75-76],模拟阴极环境由于存在高电势,相较于阳极环境,更易导致金属双极板腐蚀,模拟阴极环境下满足DOE 2020目标的材料也能满足模拟阳极环境下的要求,故本文主要对模拟阴极环境下的材料长期稳定性进行综述。
2.3 典型金属双极板及其涂层的测试结果本节根据涂层制备方法和涂层类型,对典型金属双极板及其涂层进行了讨论。表 1列出了其测试条件,并按照涂层类型进行了分类。
表 1 典型金属双极板及其涂层的测试条件
类型 | 基材 | 涂层 | 涂层制备方法 | 模拟阴极环境恒电位极化测试条件 | 极化时间/h | 接触角/(°) | 参考文献 |
金属氮化物涂层 | SS316L | CrMoN-4 A | CFUBMSIP | 0.5 mol/L H2SO4+0.005‰ HF, 70 ℃, 鼓入空气, 0.6 V | 5 | 98.4 | [75] |
Ti-6Al-4V | TiN(N-600) | 液相等离子体电解氮化 | 0.5 mol/L H2SO4+0.005‰ HF, 70 ℃, 鼓入空气, 0.6 V | 6 | [77] | ||
AISI 430 | β-Nb2N | 离子歧化反应 | 0.5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.6 V | 120 | [78] | ||
SS316L | 等离子体渗氮涂层(500 V) | 磁控溅射 | 0.5 mol/L H2SO4+0.005‰ HF, 80 ℃, 鼓入空气, 0.6 V | 1 | [63] | ||
CrNx-4 A | 等离子体增强平衡磁控溅射 | ||||||
金属碳化物涂层 | TA1 | TiC | 双辉光等离子体表面改性 | 0.05 mol/L H2SO4+0.002‰ HF, 70 ℃, 鼓入空气, 0.63 V | 4 | 112 | [60] |
SS304 | CrC-10 A | 电镀 | [79] | ||||
SS304 | Ti3SiC2-1 000 ℃ | 磁控溅射 | 0.5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.6 V | 10 | [80] | ||
金属氧化物涂层 | 2205SS | Mo富集 | 球磨 | 0.5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.6 V | 3 | [81] | |
SS304 | SnO2 | 化学镀 | 0.05 mol/L H2SO4+0.002‰ HF, 70 ℃, 鼓入空气, 0.6 V | 4 | [82] | ||
SS316L | TiNO/TiO2 | CFUBMSIP | 0.5 mol/L H2SO4+0.004‰ HF, 80 ℃, 鼓入空气, 0.6 V | 24 | 111.6 | [83] | |
合金涂层 | Al | NiCrBSi | 超音速火焰喷涂 | 原位测试, 200 mA/cm2 | [84] | ||
Al | Ni-Co-P | 电镀 | 0.5 mol/L H2SO4+0.002‰ HF, 80 ℃, 鼓入空气, 0.6 V | 5 | [85] | ||
AA6061 | |||||||
AA3004 | |||||||
AA1050 | |||||||
非金属涂层 | SS316L | 聚间苯二胺 | 电化学聚合 | [86] | |||
SS316L | 聚对苯二胺 | 电化学聚合 | [87] | ||||
SS316L | 聚苯胺 | 电化学沉积 | 0.5 mol/L H2SO4+0.002‰ HF, 80 ℃, 鼓入空气, 0.6 V | 10 | [88] | ||
SS316L | a-c涂层(60 V) | 磁控溅射 | pH 3, H2SO4+0.002‰ HF, 80 ℃, 鼓入空气, 0.9 V | 1 | [89] | ||
复合涂层 | SS316L | Cr a-c涂层 | CFUBMSIP | pH 3, H2SO4+0.002‰ HF, 80 ℃, 鼓入空气, 0.86 V | 1 | 87.9 | [90] |
Ti a-c涂层 | 75 | ||||||
Nb a-c涂层 | 80.1 | ||||||
SS316L | Ag掺杂碳涂层 | 喷涂 | 0.5 mol/L H2SO4+0.005‰ F-, 80 ℃, 鼓入空气, 0.6 V | 10 | [91] | ||
Ti | Ni-P/TiN | 化学镀 | 0.5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.6 V | 5 | [92] | ||
SS316L | Au/TiN | 磁控溅射 | 0.000 5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.665 V | 48 | [93] | ||
Ti | C/PTFE/TiN | 两步水热浸渍法 | 0.5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.6 V | 5 | 120.2 | [94] | |
SS316L | W掺杂碳涂层 | CFUBMSIP | 0.5 mol/L H2SO4+0.002‰ F-, 70 ℃, 鼓入空气, 0.6 V | 10 | [95] |
表选项
1) 金属氮化物涂层。
采用金属氮化物作为涂层的双极板表面结构比较致密,能够提供优良的保护。Jin等[75]采用封闭场非平衡磁控溅射离子镀(closed field unbalanced magnetron sputter ion plating, CFUBMSIP)技术,利用不同的电流,将具有不同Mo含量的CrMoN膜镀到SS316L上,在电流4 A的条件下,得到的CrMoN-4 A涂层具有最佳的耐蚀性和ICR,表面致密、均匀、连续,有颗粒感,接触角为98.4°;Jin等[77]还用液相等离子体电解氮化技术将TiN镀到Ti-6Al-4 V上,得到的涂层TiN(N-600)表面结构致密,但有微裂纹存在;L X Yang等[78]利用离子歧化反应将β-Nb2N镀于AISI430不锈钢上,得到的涂层表面结构均匀致密,无明显缺陷;Xu等[63]比较了磁控溅射技术制备的等离子渗氮涂层和等离子体增强平衡磁控溅射CrNx-4 A涂层,前者表面粗糙,在晶界处存在缺陷,后者表面覆盖的晶粒均匀致密,排列整齐,测得的腐蚀电流密度也表明后者耐蚀性优于等离子渗氮涂层。
2) 金属碳化物涂层。
采用金属碳化物作为涂层可以降低成本。Shi等[60]采用双辉光等离子体表面改性技术直接在钛合金TA1上制备了TiC涂层,避免了昂贵而复杂的工艺问题,涂层均匀致密无缺陷,测得的接触角为112°,与无涂层的钛板相比,模拟阴极环境下的腐蚀电流密度降低了大约一个数量级,在140 N/cm2的压力下,ICR为7.5 mΩ/cm2,远低于无涂层的钛板的98.1 mΩ/cm2;H Wang等[79]将CrC电镀到SS304上,发现涂层中的C含量随着涂层电流密度的增加而降低,在10 A/dm2的小电流电镀时表面状况良好,而在50 A/dm2的大电流电镀时表面出现裂纹和针孔;Lu等[80]将Ti3SiC2磁控溅射到SS304上,发现可以通过改变膜中TiC和Ti3SiC2的比例来调节涂层的耐蚀性和导电性,得到的涂层表面呈均匀分布的颗粒状,且具有一定的方向结构,整体形貌粗糙。
3) 金属氧化物涂层。
采用金属氧化物作为涂层比较简单,早期表面处理技术直接采用金属双极板上生成的氧化膜作为防护涂层,但是耐蚀性和ICR不佳。近期研究则是结合喷涂方法进行创新。Lv等[81]采用球磨技术实现了2205双相不锈钢表面的Mo富集,形成的涂层表面呈波浪状,显著提高了在阴极环境的耐蚀性,降低了ICR值;L Yang等[82]将SnO2化学镀到SS304上,表面呈现晶粒结构;Jin等[83]采用CUFBMSIP技术将TiNO/TiO2镀于SS316L上,表面致密,无明显针孔和缺陷。
4) 合金涂层。
采用合金作为保护涂层的双极板表面结构比较粗糙,尚不能达到DOE 2020目标。Madadi等[84]采用超音速火焰喷涂技术,在Al表面镀上NiCrBSi合金,表面结构致密粗糙,有未熔化的颗粒;Fetohi等[85]采用电镀将Ni-Co-P分别镀于Al、AA6061、AA3004、AA1050上,比较不同基材对涂层性能的影响,如图 6所示,AA6061和AA3004基材表面有细小裂纹,表面晶粒直径大小为AA1050>AA6061>Al>AA3004。
图 6 不同基材电镀Ni-Co-P涂层的扫描电镜图像[85] |
图选项 |
5) 非金属涂层。
非金属涂层表面结构均匀致密。在SS316L基材上,Shanmugham等用电化学聚合法制备了聚间苯二胺涂层[86]和聚对苯二胺涂层[87],Li等[88]用电化学沉积法制备了聚苯胺涂层,Bi等[89]用磁控溅射法制备了非晶碳(a-c)涂层,这些研究都得到均匀致密、无明显缺陷存在的涂层。
6) 复合涂层。
复合涂层表面结构均匀致密,某些涂层还有金属粒子形核中心,增强了导电性。Bi等[90]使用CFUBMSIP技术在SS316L基材上分别制备了Cr a-c涂层、Ti a-c涂层和Nb a-c涂层,表面结构都是致密均匀无缺陷的,它们的接触角分别为87.9°、75°和80.1°;Liu等[91]将Ag掺杂碳涂层喷涂到Ti基材上,得到了表面结构连续的保护层,且在碳涂层与基体之间形成了良好的附着力;Ouyang等[92]将Ni-P/TiN化学镀到Ti基材上,得到了表面以TiN粒子为形核中心的Ni-P涂层;Fan等[93]将Au/TiN磁控溅射到SS316L基材表面,得到了表面覆盖有Au点的TiN涂层,Au点与基材连接,实现了高导电性和高耐蚀性;Gao等[94]将C/PTFE/TiN采用两步水热浸渍法镀于Ti基材表面,PTFE可以填充碳涂层的孔,提高涂层的光滑度,增强保护作用,TiN则可改善涂层的导电性,通过改变样品PTFE和TiN的含量,在质量分数10%的PTFE和3 g/L的TiN悬浮液下得到的涂层具有最佳的性能,表面平整光滑,其接触角为120.2°;Z Wang等[95]采用CFUBMSIP技术,在SS316L基材表面镀上W掺杂碳涂层,由于碳膜中金属W的氧化,使涂层具有自钝化能力,得到的涂层表面均匀致密,具有晶界结构。
为了比较上述涂层的性能,将它们的ICR、腐蚀电势、极化前腐蚀电流密度、经恒电位极化实验后阴极电势下的腐蚀电流密度作为参数,绘制了图 7。如图 7a所示,纵坐标为涂层的ICR,横坐标为腐蚀电势,红色水平虚线为DOE 2020 ICR目标,即10 mΩ/cm2,垂直虚线为阳极工作电势-0.1 V,右框内图为右下数据点放大图。可以看出,几乎所有涂层都达到了DOE 2020的目标,使PEMFC处于低内阻的状态;腐蚀电势大于-0.1 V说明涂层能够很好地在阳极工作环境下保护金属双极板,除合金涂层外,大部分涂层的腐蚀电势大于-0.1 V,在阳极工作电势下不易发生腐蚀,同时它们的腐蚀电势小于+0.6 V,在阴极工作电势下有发生腐蚀的倾向,这说明相较于阳极工作环境,阴极工作环境是影响金属双极板耐久性的主要原因。
图 7 (网络版彩图)典型涂层的ICR、腐蚀电势及腐蚀电流密度比较 |
图选项 |
如图 7b所示,纵坐标为经恒电位极化后腐蚀电流密度,横坐标为极化前腐蚀电流密度,红色虚线为DOE 2020腐蚀电流密度目标1 μA/cm2,辅助线y=x表征恒电位极化测试后耐腐蚀性能的变化,右框内图为左下数据点放大图。对于目前研究的大多数涂层来说,达到DOE 2020目标并不困难。部分涂层在恒电位极化测试后腐蚀电流密度降低,即对应数据点处于辅助线y=x下方,说明涂层在阴极环境中工作一段时间后不仅没有脱落或腐蚀,反而保护效果变得更好,这是由于涂层发生了钝化,涂层表面变得更加致密造成的。
当前研究的合金涂层防护性不佳[84-85],腐蚀电势小于-0.1 V,表明在阳极工作环境下也会发生腐蚀现象,而且由于模拟阴极环境下腐蚀电流密度和经恒电位极化实验后的腐蚀电流密度过大,没有画在图中。合金涂层表面结构粗糙,有微裂纹存在,表面结构影响了ICR、腐蚀电势、腐蚀电流密度等关键参数值。
3 金属双极板及其涂层导电性与耐久性影响因素通过对相关文献的整理,如图 8所示,归纳了工作环境和工作状况对金属双极板及其涂层耐久性的影响因素:
图 8 金属双极板及涂层的影响因素 |
图选项 |
1) 由于材料老化和控制策略不佳,使PEMFC的工作环境发生了变化,如温度、双极板表面液态水的pH值、水中阴离子浓度变化等。
温度升高会增加钝化膜的厚度,也会改变钝化膜中某些氧化物的含量,从而改变ICR和腐蚀电流密度。Y Yang等[96-97]研究发现,SS316L基材90 ℃的ICR为138 mΩ/cm2,比70 ℃的高38 mΩ/cm2,且钝化区域变窄、点蚀电位降低,其原因是钝化膜主要由铁氧化物和铬氧化物组成,温度升高时,钝化膜厚度增加导致ICR上升,铬氧化物含量降低导致耐蚀性下降。Ma等[98]则研究了温度对Ta2N涂层的影响,发现75 ℃腐蚀电流密度为6.95×10-2 μA/cm2,是25 ℃下的1.89倍。
较小浓度的H+能够促使涂层及基材形成钝化膜,但较大浓度的H+则会使其发生局部腐蚀现象。H2SO4浓度由小变大(0→10-5→10-4→0.01→0.1→1 mol/L),即pH值从大到小变化时,对于无涂层的SS316L,腐蚀电流密度先增大后减小(0.82→1.48→1.43→0.9→0.88→0.64 μA/cm2)[99];Ta2N涂层pH值发生变化(3.5→2.5→1.5)时,腐蚀电流密度也会发生类似的变化(6.95×10-2→7.28×10-2→7.73×10-2 μA/cm2)[98];其他几种涂层也存在类似的变化[6, 100-102]。
阴离子也会加速基材及其涂层的腐蚀,但是影响效果不同。在模拟阴极的环境下,F-离子浓度从3×10-4 mol/L变化为5×10-3 mol/L,SS316L的腐蚀电流密度从0.498 μA/cm2上升到了0.677 μA/cm2,模拟阳极环境下腐蚀电流密度则从0.16 μA/cm2上升到了0.29 μA/cm2,再次证明了阴极环境较阳极环境更加恶劣,且F-浓度上升降低了金属的耐蚀性[97, 103];在电解液中添加少量(0.01‰)的Cl-并不会对腐蚀电流密度产生影响,只有添加大量(0.1‰)的Cl-才会造成SS316L不锈钢的点蚀[6]。
外部压力和氢气浓度也会影响金属双极板导电性和耐久性。X Wang等[104]发现压力和氢气浓度越高,耐蚀性越差。氢气和压力的存在显著增加了临界电流密度和钝化电流密度,氢气对临界电流密度的影响大于对钝化电流密度的影响,而且氢气和压力有高度的协同作用,共同导致了钝化膜钝化行为的改变,改变了材料耐蚀性。
2) PEMFC在工作在启/停、怠速、高负载和变载4种工况下,各工况的电势和电流密度不同,所需的氢气和空气的过量系数也不同,不同的工作状况对金属双极板及涂层的耐久性有不同的影响。
电势对材料的耐久性影响很大。首先是在PEMFC阴极环境下,相较于阳极环境,双极板及其涂层更易发生老化[76];其次是在相同的阴极环境下,高电势下的双极板更易发生腐蚀,无涂层的SS316L在+0.6 V时会发生点蚀现象,在大于+0.7 V时会发生严重腐蚀[105];在有Mo掺杂CrN涂层的SS316L样品中高电势下也是更易发生腐蚀[106]。
在启/停工况或瞬态电势变化时,由于反应气体不充分等原因,会产生特别高的电势,加速金属的腐蚀[107-108]。
金属双极板及其涂层受多种因素的影响,综合考虑它们之间的关系有助于促进PEMFC耐久性研究。Li等[88]将工作电流密度、工作时间和工作环境下H2SO4浓度作为变量,制作了10组试样,在80 ℃下0.5 mol/L H2SO4+0.002‰ HF的模拟工作环境进行电化学测量,得到了各组试样的腐蚀电流和腐蚀电势,绘制了如图 9所示的“三等高线图”,很好地表示了腐蚀电流密度、腐蚀电势、工作电流密度、工作时间和H2SO4浓度之间的关系与变化趋势。可以从3个角度应用“三等高线图”:(1) 通过已知的条件,查图获得试样的腐蚀电流密度和腐蚀电势。(2) 通过确定某两个因素,比较另外一个因素的影响。例如,在H2SO4浓度为0.25 mol/L、工作电流密度为4.5 mA/cm2时,考察工作时间的影响,从图 9中可以看出,试样在初始阶段和1 200 s左右具有较低的腐蚀电流密度和较高的腐蚀电势,此时试样不易发生腐蚀,这是因为在1 200 s左右时试样表面产生了钝化膜,保护了试样,而之后钝化膜逐渐溶解消失,又使试样回到了易腐蚀的状态。(3) 找到试样最佳的工作环境和工作状况,图 9中灰色区域的试样有最低的腐蚀电流密度和最高的腐蚀电势,说明此条件下的涂层具有最佳的耐久性。
图 9 (网络版彩图)金属双极板及其涂层影响因素的三等高线图[88] |
图选项 |
4 总结与展望本文综述了近年来燃料电池用金属双极板的研究进展,对其表面微观结构和性能指标(界面接触电阻、腐蚀电势、极化前腐蚀电流密度、恒电位极化实验后阴极电势下的腐蚀电流密度)进行了比较。研究发现,除合金涂层外,目前的大多数涂层都符合DOE 2020目标,具有良好的耐久性,能够满足当前的应用需要。涂层的表面结构影响着双极板的导电性和耐久性,这与涂层的材料和加工方法有关。由于阴极环境劣于阳极环境,因此需要重点考虑阴极环境下的耐久性。对于许多涂层,在恒电位极化后的腐蚀电流密度较初始的腐蚀电流密度降低,说明经过一段时间工作后,涂层没有发生脱落或者破裂现象,更好地保护了基材,具有优良的耐久性。影响涂层性能的因素分为工作环境和工作状况,工作环境包含温度、pH值、F-浓度、Cl-浓度、氢气浓度和双极板的接触压力等因素,工作状况包含电势、工况变化等因素,可采用“三等高线图”来表征各因素的影响。一方面,在选择燃料电池组件时,可选择长寿命的膜电极和密封元件,减少离子逸出污染,以缓解PEMFC恶劣工作环境造成的影响;另一方面,在燃料电池运行控制时需要考虑电势、工况变化等因素,避免PEMFC因控制策略不佳,在恶劣的工作状况下工作。
对金属双极板及其涂层导电性和耐久性的未来研究可关注以下几方面:
1) 测试方法的改进与应用。当前的耐久性加速测试方法主要为恒电位极化老化,未来可以进一步拓展动电位极化老化的相关研究,因为动电位能够很好地模拟燃料电池的工作状况;此外,还应加强对即时性能的研究,对老化过程中的ICR、腐蚀电流、腐蚀电势进行实时观测,以发挥燃料电池的最佳性能,指导控制策略的制定。
2) 涂层的研究。当前绝大多数研究得到的涂层能够满足DOE 2020目标,具有良好的耐久性,但是合金涂层仍然存在不足,不能满足使用要求。今后的研究可以综合考虑材料与工艺,对两者进行组合以选择最佳涂层。
3) 影响因素的比较。在统一的测试条件下,将工作环境和工作状况下的各影响因素作为变量,找到影响最大的因素,以及各因素之间的耦合关系,从而对双极板及其涂层的导电性和耐久性进行建模,在控制策略中规避不利因素,可以提升燃料电池的性能。
参考文献
[1] | FATHABADI H. Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle[J]. Renewable Energy, 2019, 130: 714-724. DOI:10.1016/j.renene.2018.06.104 |
[2] | LI W, LONG R, CHEN H, et al. Willingness to pay for hydrogen fuel cell electric vehicles in China: A choice experiment analysis[J]. International Journal of Hydrogen Energy, 2020, 45(59): 34346-34353. DOI:10.1016/j.ijhydene.2020.01.046 |
[3] | TAN? B, ARAT H T, BALTACIOG?LU E, et al. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2019, 44(20): 10120-10128. DOI:10.1016/j.ijhydene.2018.10.112 |
[4] | CHEN H, PEI P, SONG M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. DOI:10.1016/j.apenergy.2014.12.062 |
[5] | WHISTON M M, AZEVEDO I L, LITSTER S, et al. Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles[J]. Proceedings of the National Academy of Sciences, 2019, 116(11): 4899-4904. DOI:10.1073/pnas.1804221116 |
[6] | L?DRE S, KONGSTEIN O E, OEDEGAARD A, et al. The effect of pH and halides on the corrosion process of stainless steel bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18537-18546. DOI:10.1016/j.ijhydene.2012.09.021 |
[7] | WANG J, DEREK O N. An investigation on metallic bipolar plate corrosion in simulated anode and cathode environments of PEM fuel cells using potential-pH diagrams[J]. International Journal of Electrochemical Science, 2006, 1: 447-455. |
[8] | KUMAGAI M, MYUNG S, KUWATA S, et al. Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2008, 53(12): 4205-4212. DOI:10.1016/j.electacta.2007.12.078 |
[9] | HERMAS A A, MORAD M S. A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions[J]. Corrosion Science, 2008, 50(9): 2710-2717. DOI:10.1016/j.corsci.2008.06.029 |
[10] | NIKAM V V, REDDY R G. Copper alloy bipolar plates for polymer electrolyte membrane fuel cell[J]. Electrochimica Acta, 2006, 51(28): 6338-6345. DOI:10.1016/j.electacta.2006.04.019 |
[11] | XU J, LI Z, XU S, et al. A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application[J]. Journal of Power Sources, 2015, 297: 359-369. DOI:10.1016/j.jpowsour.2015.08.024 |
[12] | ORSI A, KONGSTEIN O E, HAMILTON P J, et al. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study[J]. Journal of Power Sources, 2015, 285: 530-537. DOI:10.1016/j.jpowsour.2015.03.111 |
[13] | SCHERER J, MüNTER D, STR?BEL R. Influence of metallic bipolar plates on the durability of polymer electrolyte fuel cells[M]. Berlin, Germany: Springer, 2009: 243-255. |
[14] | WANG B, LIN R, LIU D, et al. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13737-13743. DOI:10.1016/j.ijhydene.2019.03.139 |
[15] | WEI G, LU J, ZHANG Q, et al. Analyze the effects of flow mode and humidity on PEMFC performance by equivalent membrane conductivity[J]. International Journal of Energy Research, 2019, 43(9): 4592-4605. DOI:10.1002/er.4592 |
[16] | YIN Y, LI R, BAI F, et al. Ionomer migration within PEMFC catalyst layers induced by humidity changes[J]. Electrochemistry Communications, 2019, 109: 106590. DOI:10.1016/j.elecom.2019.106590 |
[17] | ZHANG H, HAAS H, HU J, et al. The impact of potential cycling on PEMFC durability[J]. Journal of the Electrochemical Society, 2013, 160(8): F840. DOI:10.1149/2.083308jes |
[18] | ZHANG Q, TONG Z, TONG S. Effect of cathode recirculation on high potential limitation and self-humidification of hydrogen fuel cell system[J]. Journal of Power Sources, 2020, 468: 228388. DOI:10.1016/j.jpowsour.2020.228388 |
[19] | AMADANE Y, MOUNIR H, KARIM E M. Numerical investigation of temperature and current density distribution on (PEM) fuel cell performance[C]//20186 th International Renewable and Sustainable Energy Conference (IRSEC). Morocco, USA, 2018: 1-6. |
[20] | LUO L, HUANG B, CHENG Z, et al. Rapid degradation characteristics of an air-cooled PEMFC stack[J]. International Journal of Energy Research, 2020, 44(6): 4784-4799. DOI:10.1002/er.5266 |
[21] | NANADEGANI F S, LAY E N, SUNDEN B. Effects of an MPL on water and thermal management in a PEMFC[J]. International Journal of Energy Research, 2019, 43(1): 274-296. DOI:10.1002/er.4262 |
[22] | CHEN H, SONG Z, ZHAO X, et al. A review of durability test protocols of the proton exchange membrane fuel cells for vehicle[J]. Applied Energy, 2018, 224: 289-299. DOI:10.1016/j.apenergy.2018.04.050 |
[23] | PEI P, CHANG Q, TANG T. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3829-3836. DOI:10.1016/j.ijhydene.2008.04.048 |
[24] | PEI P, CHEN D, WU Z, et al. Nonlinear methods for evaluating and online predicting the lifetime of fuel cells[J]. Applied Energy, 2019, 254: 113730. DOI:10.1016/j.apenergy.2019.113730 |
[25] | XU L, REIMER U, LI J, et al. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data[J]. Journal of Power Sources, 2018, 377: 59-69. DOI:10.1016/j.jpowsour.2017.11.075 |
[26] | REN P, PEI P, LI Y, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. DOI:10.1016/j.pecs.2020.100859 |
[27] | LI Y, PEI P, MA Z, et al. Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell[J]. Applied Energy, 2019, 248: 321-329. DOI:10.1016/j.apenergy.2019.04.140 |
[28] | LI Y, PEI P, WU Z, et al. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells[J]. Applied Energy, 2018, 224: 42-51. DOI:10.1016/j.apenergy.2018.04.071 |
[29] | LI Y, PEI P, WU Z, et al. Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management[J]. Applied Energy, 2017, 190: 713-724. DOI:10.1016/j.apenergy.2017.01.010 |
[30] | MO?OTéGUY P, LUDWIG B, BERETTA D, et al. Study of the impact of water management on the performance of PEMFC commercial stacks by impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16724-16737. DOI:10.1016/j.ijhydene.2020.04.139 |
[31] | PEI P, LI Y, XU H, et al. A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied Energy, 2016, 173: 366-385. DOI:10.1016/j.apenergy.2016.04.064 |
[32] | REN P, PEI P, LI Y, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239: 785-792. DOI:10.1016/j.apenergy.2019.01.235 |
[33] | WANG X R, MA Y, GAO J, et al. Review on water management methods for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 46(22): 12206-12229. |
[34] | WILBERFORCE T, EL HASSAN Z, OGUNGBEMI E, et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 236-260. DOI:10.1016/j.rser.2019.04.081 |
[35] | HERMANN A, CHAUDHURI T, SPAGNOL P. Bipolar plates for PEM fuel cells: A review[J]. International Journal of Hydrogen Energy, 2005, 30(12): 1297-1302. DOI:10.1016/j.ijhydene.2005.04.016 |
[36] | LEE H E, CHUNG Y S, KIM S S. Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates[J]. Composite Structures, 2017, 180: 378-385. DOI:10.1016/j.compstruct.2017.08.037 |
[37] | PLANES E, FLANDIN L, ALBEROLA N. Polymer composites bipolar plates for PEMFCs[J]. Energy Procedia, 2012, 20: 311-323. DOI:10.1016/j.egypro.2012.03.031 |
[38] | SONG Y, ZHANG C, LING C, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847. DOI:10.1016/j.ijhydene.2019.07.231 |
[39] | TAHERIAN R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390. DOI:10.1016/j.jpowsour.2014.04.081 |
[40] | TAWFIK H, HUNG Y, MAHAJAN D. Metal bipolar plates for PEM fuel cell: A review[J]. Journal of Power Sources, 2007, 163(2): 755-767. DOI:10.1016/j.jpowsour.2006.09.088 |
[41] | WANG H, TURNER J A. Reviewing metallic PEMFC bipolar plates[J]. Fuel Cells, 2010, 10(4): 510-519. DOI:10.1002/fuce.200900187 |
[42] | BALLARED. FCgen HPS specification sheet[EB/OL]. [2021-01-13]. https://www.ballard.com/about-ballard/publication_library/product-specification-sheets/fcgen-hps-spec-sheet. |
[43] | ElringKlinger. ElringKlinger fuel cell technology[EB/OL]. [2021-01-13]. https://www.elringklinger.com/en/press/publications/e-mobility/fuel-cell-technology. |
[44] | Shanghai Hydrogen Propulsion Technology. SHPT PROME M3H PEM fuel cell stack[EB/OL]. [2021-01-13]. https://www.shpt.com/pc/en/index.html. |
[45] | Powercell. Powercell fuel cell stacks[EB/OL]. [2021-01-13]. https://www.powercell.se/en/products-and-services/fuel-cell-stacks/. |
[46] | 氢璞创能. 燃料电池电堆[EB/OL]. [2021-01-13]. http://www.nowogen.com/. NOWOGEN. NOWOGEN PEM fuel cell stack[EB/OL]. [2021-01-13]. http://www.nowogen.com/. (in Chinese) |
[47] | 新源动力股份有限公司. 燃料电池电堆[EB/OL]. [2021-01-13]. http://www.fuelcell.com.cn/sunrisepower/index.html. SUNRISEPOWER. SUNRISEPOWER HYMOD-110 stack[EB/OL]. [2021-01-13]. http://www.fuelcell.com.cn/sunrisepower/index.html. (in Chinese) |
[48] | POLLET B G, KOCHA S S, STAFFELL I. Current status of automotive fuel cells for sustainable transport[J]. Current Opinion in Electrochemistry, 2019, 16: 90-95. DOI:10.1016/j.coelec.2019.04.021 |
[49] | 上海氢晨. 车用燃料电池堆[EB/OL]. [2021-01-13]. http://www.shanghaiqingchen.com/index.php. H-Rise. H-Rise PEMFC stack[EB/OL]. [2021-01-13]. http://www.shanghaiqingchen.com/index.php. (in Chinese) |
[50] | 上海神力科技有限公司. 燃料电池模块[EB/OL]. [2021-01-13]. http://www.sl-power.com/index.aspx. SinoFuelCell. SinoFuelCell PEM fuel cell stack[EB/OL]. [2021-01-13]. http://www.sl-power.com/index.aspx. (in Chinese) |
[51] | 弗尔赛能源. 电堆模块[EB/OL]. [2021-01-13]. http://www.foresight-energy.cn/. FORESIGHT ENERGY. FORESIGHT ENERGY PEM fuel cell stack[EB/OL]. [2021-01-13]. http://www.foresight-energy.cn/. (in Chinese) |
[52] | 新研氢能科技有限公司. 车用燃料电池堆[EB/OL]. [2021-01-13]. http://www.innoreagen.com/index.html. INNOREAGEN. INNOREAGEN PEMFC stack[EB/OL]. [2021-01-13]. http://www.innoreagen.com/index.html. (in Chinese) |
[53] | 国鸿氢能, 国鸿氢能燃料电池电堆[EB/OL]. [2021-01-13]. http://www.sinosynergypower.com/index.aspx. SINOSYNERGY. SINOSYNERGY PEMFC stack[EB/OL]. [2021-01-13]. http://www.sinosynergypower.com/index.aspx. (in Chinese) |
[54] | 清能股份. 燃料电池电堆[EB/OL]. [2021-01-13] http://www.qingnengfc.com/. Horizon. Horizon PEM fuel cell stack[EB/OL]. [2021-01-13]. http://www.qingnengfc.com/. (in Chinese) |
[55] | 明天氢能科技. 燃料电池电堆[EB/OL]. [2021-01-13]. http://www.mth2.com/. MINGTIAN HYDROGEN ENERGY TECHNOLOGY. PEMFC stack[EB/OL]. [2021-01-13]. http://www.mth2.com/. (in Chinese) |
[56] | KARIMI S, FRASER N, ROBERTS B, et al. A review of metallic bipolar plates for proton exchange membrane fuel cells: Materials and fabrication methods[J]. Advances in Materials Science and Engineering, 2012, 2012: 828070-828092. |
[57] | ASRI N F, HUSAINI T, SULONG A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9135-9148. DOI:10.1016/j.ijhydene.2016.06.241 |
[58] | BHOSALE A C, RENGASWAMY R. Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109351-109366. DOI:10.1016/j.rser.2019.109351 |
[59] | LARIJANI M M, YARI M, AFSHAR A, et al. A comparison of carbon coated and uncoated 316L stainless steel for using as bipolar plates in PEMFCs[J]. Journal of Alloys and Compounds, 2011, 509(27): 7400-7404. DOI:10.1016/j.jallcom.2011.04.044 |
[60] | SHI J, ZHANG P, HAN Y, et al. Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10050-10058. DOI:10.1016/j.ijhydene.2020.01.203 |
[61] | WANG C, WANG S, PENG L, et al. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications[J]. Energies, 2016, 9(8): 603-642. DOI:10.3390/en9080603 |
[62] | WILBERFORCE T, IJAODOLA O, OGUNGBEMI E, et al. Technical evaluation of proton exchange membrane (PEM) fuel cell performance: A review of the effects of bipolar plates coating[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109286-109301. DOI:10.1016/j.rser.2019.109286 |
[63] | XU M, KANG S, LU J, et al. Properties of a plasma-nitrided coating and a CrNx coating on the stainless steel bipolar plate of PEMFC[J]. Coatings, 2020, 10(2): 183-197. DOI:10.3390/coatings10020183 |
[64] | IJAODOLA O, OGUNGBEMI E, KHATIB F N, et al. Evaluating the effect of metal bipolar plate coating on the performance of proton exchange membrane fuel cells[J]. Energies, 2018, 11(11): 3203-3231. DOI:10.3390/en11113203 |
[65] | KAUSAR A. Corrosion prevention prospects of polymeric nanocomposites: A review[J]. Journal of Plastic Film & Sheeting, 2019, 35(2): 181-202. |
[66] | LEE S, WOO S, KAKATI N, et al. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates[J]. Surface and Coatings Technology, 2016, 303: 162-169. DOI:10.1016/j.surfcoat.2016.03.072 |
[67] | MUKHERJEE S, BATES A, LEE S C, et al. A review of the application of CNTs in PEM fuel cells[J]. International Journal of Green Energy, 2015, 12(8): 787-809. DOI:10.1080/15435075.2013.867270 |
[68] | WLODARCZYK R. Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells: A review[J]. Functional Materials Letters, 2019, 12(2): 1930001-1930020. DOI:10.1142/S1793604719300019 |
[69] | YI P, ZHANG D, QIU D, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6813-6843. DOI:10.1016/j.ijhydene.2019.01.176 |
[70] | KAHRAMAN H, CEVIK I, DüNDAR F, et al. The corrosion resistance behaviors of metallic bipolar plates for PEMFC coated with physical vapor deposition (PVD): An experimental study[J]. Arabian Journal for Science and Engineering, 2016, 41(5): 1961-1968. DOI:10.1007/s13369-016-2058-x |
[71] | 陈骏, 余意. 质子交换膜燃料电池关键内阻研究进展[J]. 上海汽车, 2016(10): 6-9. CHEN J, YU Y. Research progress of key internal resistance in a PEMFC[J]. Shanghai Auto, 2016(10): 6-9. (in Chinese) |
[72] | POZIO A, ZAZA F, MASCI A, et al. Bipolar plate materials for PEMFCs: A conductivity and stability study[J]. Journal of Power Sources, 2008, 179(2): 631-639. DOI:10.1016/j.jpowsour.2008.01.038 |
[73] | LAEDRE S, KONGSTEIN O E, OEDEGAARD A, et al. In situ and ex situ contact resistance measurements of stainless steel bipolar plates for PEM fuel cells[J]. ECS Transactions, 2013, 50(2): 829-841. DOI:10.1149/05002.0829ecst |
[74] | L?DRE S, KONGSTEIN O E, OEDEGAARD A, et al. Measuring in situ interfacial contact resistance in a proton exchange membrane fuel cell[J]. Journal of the Electrochemical Society, 2019, 166(13): F853-F861. DOI:10.1149/2.1511912jes |
[75] | JIN J, LIU H, ZHENG D, et al. Effects of Mo content on the interfacial contact resistance and corrosion properties of CrN coatings on SS316L as bipolar plates in simulated PEMFCs environment[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10048-10060. DOI:10.1016/j.ijhydene.2018.04.044 |
[76] | YANG Y, NING X, TANG H, et al. Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application[J]. Applied Surface Science, 2014, 320: 274-280. DOI:10.1016/j.apsusc.2014.09.049 |
[77] | JIN J, HE Z, ZHAO X. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4 V bipolar plates for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12489-12500. DOI:10.1016/j.ijhydene.2020.02.152 |
[78] | YANG L X, LIU R J, WANG Y, et al. Growth of nanocrystalline β-Nb2N coating on 430 ferritic stainless steel bipolar plates of PEMFCs by disproportionation reaction of Nb (Ⅳ) ions in molten salt[J]. Corrosion Science, 2020, 174: 108862-108872. DOI:10.1016/j.corsci.2020.108862 |
[79] | WANG H, HOU K, LU C, et al. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells[J]. Thin Solid Films, 2014, 570: 209-214. DOI:10.1016/j.tsf.2014.03.034 |
[80] | LU J L, ABBAS N, TANG J, et al. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments[J]. Electrochemistry Communications, 2019, 105: 106490-106495. DOI:10.1016/j.elecom.2019.106490 |
[81] | LV J, WANG Z, LIANG T, et al. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum[J]. Results in Physics, 2017, 7: 3459-3464. DOI:10.1016/j.rinp.2017.09.001 |
[82] | YANG L, QIN Z L, PAN H T, et al. Corrosion protection of 304 stainless steel bipolar plates of PEMFC by coating SnO2 film[J]. International Journal of Electrochemical Science, 2017, 12: 10946-10957. |
[83] | JIN J, HU M, ZHAO X. Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23310-23326. DOI:10.1016/j.ijhydene.2020.06.059 |
[84] | MADADI F, REZAEIAN A, EDRIS H, et al. Improving performance in PEMFC by applying different coatings to metallic bipolar plates[J]. Materials Chemistry and Physics, 2019, 238: 121911-121921. DOI:10.1016/j.matchemphys.2019.121911 |
[85] | FETOHI A E, HAMEED R A, EL KHATIB K M, et al. Study of different aluminum alloy substrates coated with Ni-Co-P as metallic bipolar plates for PEM fuel cell applications[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10807-10817. DOI:10.1016/j.ijhydene.2012.04.066 |
[86] | SHANMUGHAM C, RAJENDRAN N. Poly (m-phenylenediamine)-coated 316L SS: A promising material for bipolar plates in PEMFC environment[J]. Materials and Corrosion, 2019, 70(9): 1646-1656. DOI:10.1002/maco.201810524 |
[87] | SHANMUGHAM C, RAJENDRAN N. Corrosion resistance of poly p-phenylenediamine conducting polymer coated 316L SS bipolar plates for proton exchange membrane fuel cells[J]. Progress in Organic Coatings, 2015, 89: 42-49. DOI:10.1016/j.porgcoat.2015.07.023 |
[88] | LI P, DING X, YANG Z, et al. Electrochemical synthesis and characterization of polyaniline-coated PEMFC metal bipolar plates with improved corrosion resistance[J]. Ionics, 2018, 24(4): 1129-1137. DOI:10.1007/s11581-017-2274-8 |
[89] | BI F, HOU K, YI P, et al. Mechanisms of growth, properties and degradation of amorphous carbon films by closed field unbalanced magnetron sputtering on stainless steel bipolar plates for PEMFCs[J]. Applied Surface Science, 2017, 422: 921-931. DOI:10.1016/j.apsusc.2017.06.122 |
[90] | BI F, LI X, YI P, et al. Characteristics of amorphous carbon films to resist high potential impact in PEMFCs bipolar plates for automotive application[J]. International Journal of Hydrogen Energy, 2017, 42(20): 14279-14289. DOI:10.1016/j.ijhydene.2017.04.113 |
[91] | LIU M, XU H, FU J, et al. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 844-849. DOI:10.1007/s12613-016-1299-8 |
[92] | OUYANG C, ZHANG X, WU M, et al. Physical and electrochemical properties of Ni-P/TiN coated Ti for bipolar plates in PEMFCs[J]. International Journal of Electrochemical Science, 2020, 15: 80-93. |
[93] | FAN H, SHI D, WANG X, et al. Enhancing through-plane electrical conductivity by introducing Au microdots onto TiN coated metal bipolar plates of PEMFCs[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29442-29448. DOI:10.1016/j.ijhydene.2020.07.270 |
[94] | GAO P, XIE Z, WU X, et al. Development of Ti bipolar plates with carbon/PTFE/TiN composites coating for PEMFCs[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20947-20958. DOI:10.1016/j.ijhydene.2018.09.046 |
[95] | WANG Z, FENG K, LI Z, et al. Self-passivating carbon film as bipolar plate protective coating in polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(13): 5783-5792. DOI:10.1016/j.ijhydene.2016.02.076 |
[96] | YANG Y, GUO L, LIU H. The effect of temperature on corrosion behavior of SS316L in the cathode environment of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(13): 5503-5510. DOI:10.1016/j.jpowsour.2011.02.070 |
[97] | YANG Y, GUO L, LIU H. Influence of fluoride ions on corrosion performance of 316L stainless steel as bipolar plate material in simulated PEMFC anode environments[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1875-1883. DOI:10.1016/j.ijhydene.2011.06.088 |
[98] | MA J J, XU J, JIANG S, et al. Effects of pH value and temperature on the corrosion behavior of a Ta2N nanoceramic coating in simulated polymer electrolyte membrane fuel cell environment[J]. Ceramics International, 2016, 42(15): 16833-16851. DOI:10.1016/j.ceramint.2016.07.175 |
[99] | YANG Y, GUO L, LIU H. Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1654-1663. DOI:10.1016/j.ijhydene.2010.10.067 |
[100] | LUO H, SU H, DONG C, et al. Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells[J]. Journal of Alloys and Compounds, 2016, 686: 216-226. DOI:10.1016/j.jallcom.2016.06.013 |
[101] | W?ODARCZYK R, WRO?SKA A. Effect of pH on corrosion of sintered stainless steels used for bipolar plates in polymer exchange membrane fuel cells[J]. Archives of Metallurgy and Materials, 2013, 58: 89-93. DOI:10.2478/v10172-012-0156-7 |
[102] | TIAN R, SUN J. Effect of pH value on corrosion resistance and surface conductivity of plasma-nitrided 304L bipolar plate for PEMFC[J]. International Journal of Energy Research, 2011, 35(9): 772-780. DOI:10.1002/er.1737 |
[103] | YANG Y, GUO L, LIU H. Effect of fluoride ions on corrosion behavior of SS316L in simulated proton exchange membrane fuel cell (PEMFC) cathode environments[J]. Journal of Power Sources, 2010, 195(17): 5651-5659. DOI:10.1016/j.jpowsour.2010.03.064 |
[104] | WANG X, LUO H, LUO J. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment[J]. Electrochimica Acta, 2019, 293: 60-77. DOI:10.1016/j.electacta.2018.10.028 |
[105] | YANG Y, NING X, TANG H, et al. Effects of potential on corrosion behavior of uncoated SS316L bipolar plate in simulated PEM fuel cell cathode environment[J]. Fuel Cells, 2014, 14(6): 868-875. DOI:10.1002/fuce.201300288 |
[106] | JIN J, ZHAO X, LIU H. Durability and degradation of CrMoN coated SS316L in simulated PEMFCs environment: High potential polarization and electrochemical impedance spectroscopy (EIS)[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20293-20303. DOI:10.1016/j.ijhydene.2019.05.169 |
[107] | HINDS G, BRIGHTMAN E. Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2785-2791. DOI:10.1016/j.ijhydene.2014.12.085 |
[108] | HONG Y, WANG X, CADIEN K, et al. Transient potential induced anodic dissolution of 316L stainless steel in sulfuric acid solution[J]. Journal of the Electrochemical Society, 2019, 166(11). DOI:10.1149/2.0441911jes |