|
文章导读 |
|
摘要工业应用需要粒度均匀、球形度良好的中间相炭微球(MCMB)。反应条件、原料性质对MCMB性能有很大影响。以煤软沥青为原料,采用热缩聚法制备MCMB, 分别考察了反应过程温度、时间、压力等反应条件,以及原料软化点、原生喹啉不溶物(QI)等性质对MCMB粒度分布、形貌的影响情况。结果表明: 在一定范围内,热聚温度的升高,或聚合时间的延长,都会使炭微球粒径逐渐增大,粒度分布变窄,粒度变得均匀; 过低的反应压力使轻组分逸出,体系粘度升高,得不到规则的小球; 原料软化点低、体系粘度小,有利于小球的自由运动、融并、生长成粒度均匀的MCMB; 原料中QI是MCMB形成和发展的核心,原生QI粒度差别太大,会导致MCMB大小不均匀,甚至两极分化; 除去原料中粒径过大的QI, 有利于得到粒度均匀的MCMB。
|
关键词 :煤沥青,原料性质,反应条件,中间相炭微球(MCMB),直径分布,形貌 |
Abstract:Industrial application needs mesocarbon microbeads (MCMB) with even particle size distribution and good sphericity, while the reaction conditions and raw material property may influence the MCMB property stated above. MCMB was prepared by thermal polymerization with coal tar pitch as the raw material, with the effects of reaction conditions i.e., the temperature, time and pressure, as well as raw material properties including the soft point and quinolone-insoluble (QI) on the particle size distribution and appearance of MCMB being investigated. The results show that within a certain range, the increase of the reaction temperature or reaction time during thermal polymerization helps the grow of MCMB, and the particle size distribution becomes more narrow with granularity becoming homogeneous. Too low pressure makes the light components of the reaction system escape and the system viscosity quickly increase, which is not conducive to gain the spherical appearance. Low soft points of raw materials and small viscosities of the reaction system are helpful for the free motion and fusion of the microbeads growing to MCMB with even particle sizes. The primary QI in the raw material is the core for the formation and growth of MCMB, and if the particle sizes of the primary QI are too different, the size of MCMB will become uneven with MCMB polarized. The MCMB with even particle sizes can be obtained by removing the QI with too large particle sizes in the raw material.
|
Key words:coal tar pitchproperty of raw materialreaction conditionmesocarbon microbead (MCMB)particle size distributionappearance |
收稿日期: 2014-01-20 出版日期: 2015-04-16 |
|
基金资助:北京市教委科学研究面上项目(KM201210017003);北京市大学生研究训练URT项目(2013X00030) |
[1] | Hidemasa H. Carbonaceous mesophase: History and prospects[J]. Carbon, 1988, 26(2): 139-156. |
[2] | Yamada Y, Imamura T, Kakiyama H, et al.Characteristics of mesocarbon microbeads separated from pitch[J]. Carbon, 1974, 12(3): 307-319. |
[3] | KIM Cheol Joong, RYU Seung Kon, RHEE Bo Sung. Properties of coal tar pitch based mesophase separated by high-temperature centrifugation[J]. Carbon, 1993, 31(5): 833-838. |
[4] | Honda H. Mesophase pitch and mesocarbon microbeads[J]. Molecular Crystals and Liquid Crystals, 1983, 94(1): 97-108. |
[5] | Tokumitsu K, Fujimoto H, Mabuchi A, et al.High capacity carbon anode for Li-ion battery: A theoretical explanation[J]. Carbon, 1999, 37(10): 1599-1605. |
[6] | 许斌, 陈鹏. 中间相炭微珠( MCMB)的开发、性质和应用[J]. 新型碳材料, 1996, 11(3): 4-8. XU Bin, CHEN Peng. Exploitation, property and application of mesocarbon microbeads (MCMB)[J]. New Carbon Materials, 1996, 11(3): 4-8. (in Chinese) |
[7] | 高燕, 宋怀河, 陈晓红, 等. 不同β树脂含量的沥青中间相炭微球形态及其成型性能研究[J]. 新型炭材料, 2001, 16(2): 32-35. GAO Yan, SONG Huaihe, CHEN Xiaohong, et al.The morphology and moulding properties of mesocarbon microbeads (MCMBs) with different β resins[J]. New Carbon Materials, 2001, 16(2): 32-35. (in Chinese) |
[8] | Kodama M, Fujirua T, Esumi K, et al.Preparation of meso-carbon microbeads with a narrow size distribution[J]. Carbon, 1988, 26(4): 595-598. |
[9] | Yoona S H, Park Y D, Mochida I. Preparation of carbonaceous spheres from suspensions of pitch materials[J]. Carbon, 1992, 30(5): 781-786. |
[10] | 李同起, 王成扬, 郑嘉明, 等. 非均相成核中间相炭微球的形成过程及其结构演变[J]. 新型碳材料, 2004, 19(4): 281-286. LI Tongqi, WANG Chengyang, ZHENG Jiaming, et al.Formation of MCMB through heterogeneous nucleation and the development of their structures[J]. New Carbon Materials, 2004, 19(4): 281-286. (in Chinese) |
[11] | Kodama M, Shimizu N, Fujiura T, et al.Preparation and characterization of cation-exchanger using meso-carbon microbeads prepared by emulsion method[J]. Carbon, 1990, 28(1): 199-205. |
[12] | YANG Yongzhen, LIU Xuguang, ZHANG Chunyi, et al.Controllable synthesis and modification of carbon microspheres from deoiled asphalt[J]. Journal of Physics and Chemistry of Solids, 2009, 71(3): 235-241. |
[13] | WANG Zuoshan, LI Fengsheng. Preparation of hollow carbon nanospheres via explosive detonation[J]. Materials Letters, 2009, 63(1): 58-60. |
[14] | Kodama M, Fujiura T, Ikawa E, et al.Characterization of meso-carbon microbeads prepared by emulsion method[J]. Carbon, 1991, 29(l): 43-49. |
[15] | WANG Yonggang, Egashira M, Ishida S, et al.Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black[J]. Carbon, 1999, 37(2): 307-314. |
[16] | Pérez M, Granda M, Santamaría R, et al.Preventing mesophase growth in petroleum pitches by the addition of coal tar pitch[J]. Carbon, 2003, 41: 1851-1864. |
[17] | Mora E, Santamaría R, Blanco C, et al.Mesophase development in petroleum and coal-tar pitches and their blends[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68: 409-424. |
[18] | Lü Yonggen, LING Licheng, WU Dong, et al.Preparation of mesocarbon microbeads from coal tar[J]. Journal of Material Science, 1999, 34(16): 4043-4050. |
[19] | 王成扬, 姜卉, 李鹏, 等. 原生QI成核中间相炭微球的结构[J]. 新型炭材料, 2000, 15(4): 9-12. WANG Chengyang, JIANG Hui, LI Peng, et al.Structure of mesocarbon microbeads formed with original QI as seed crystal[J]. New Carbon Materials, 2000, 15(4): 9-12. (in Chinese) |
[1] | 王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555. | [2] | 张金换, 刘卫国, 李景涛, 赵福全. 行人头型冲击器试验有限元建模及敏感参数分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 294-298. | [3] | 许述财, 邹猛, 魏灿刚, 王龙臻, 张金换, 于用军. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3): 299-304. | [4] | 屈岳波, 曹彬, 王梁, 张伯奇, 吴健栋, 蔡志鹏, 潘际銮. 窄间隙埋弧焊接头熔合区弱化的研究[J]. 清华大学学报(自然科学版), 2014, 54(3): 305-308. | [5] | 朱兵, 陈洵欢, 张文俊, 胡山鹰, 金涌. 中国合成氨行业清洁生产潜力分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 309-313. | [6] | 罗逍, 姚远, 张金换. 一种毫米波雷达和摄像头联合标定方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 289-293. | [7] | 苏健, 曾志, 程建平, 李君利. Monte Carlo方法的最优源项偏倚抽样密度函数[J]. 清华大学学报(自然科学版), 2014, 54(2): 164-171. | [8] | 刘伟强, 蒲婷, 顾洪生, 廖振华, 姜锦鹏. 中国人颈椎间盘尺寸分析[J]. 清华大学学报(自然科学版), 2014, 54(2): 172-177. | [9] | 蔡志鹏, 吴健栋, 汤之南, 张伯奇, 潘际銮, 刘霞. 汽轮机焊接转子接头低周疲劳过程损伤变量的复合分析法[J]. 清华大学学报(自然科学版), 2014, 54(2): 178-184. | [10] | 刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190. | [11] | 赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196. | [12] | 彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201. | [13] | 窦福印, 王鹏, 余兴龙. 提高角度法SPR检测系统分辨率的方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 202-206. | [14] | 孟凡, 董永贵. 基于方波脉冲激励的电导率测量方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 207-211. | [15] | 潘玉龙, 王国磊, 朱丽, 陈雁, 陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216. |
|