删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于二阶段自适应多模型的聚合釜温度控制

清华大学 辅仁网/2017-07-07

基于二阶段自适应多模型的聚合釜温度控制
王振雷1, 毛福兴1, 王昕2
1. 华东理工大学 化工过程先进控制和优化技术教育部重点实验室, 上海 200237;
2. 上海交通大学 电工与电子技术中心, 上海 200240
Temperature control of an acrylonitrile polymerization kettle using multiple models with second level adaptation
WANG Zhenlei1, MAO Fuxing1, WANG Xin2
1. Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China;
2. Center of Electrical and Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要针对丙烯腈聚合过程的强时滞和较大参数不确定等特性,该文提出一种基于二阶段自适应多模型的广义预测控制方法。该方法首先根据系统的参数范围,建立多个自适应模型,应用最小二乘算法分别进行参数估计。再利用各自适应模型的参数估计值和预报误差计算模型的权值,将各参数估计值加权求和得到最终参数估计值。将该参数估计值作为参数的真值,利用广义预测控制算法确定各时刻的控制作用。仿真结果显示:该方法能使系统未知参数快速收敛到真值,同时系统的动态性能和对理想温度的跟踪精度较常规多模型自适应控制有明显的提高。
关键词 多模型,二阶段自适应,广义预测控制,聚合釜,自适应控制
Abstract:A generalized predictive control method was developed from multiple models with second level adaptation for temperature control the acrylonitrile polymerization process which has long time delays and large parameter uncertainties. Several adaptive models are designed for the system parameter ranges with the parameters estimated by a recursive least squares algorithm. Then, the model weights are calculated based on the parameter estimates and the prediction error of each model. Then, the parameter estimates are used as the true values of the parameters to determine the control action via the generalized predictive control algorithm. Simulation results show that this method enables a system with unknown parameters to quickly converge to the true value. The system performance of the system and the tracking accuracy of the ideal temperature are significantly improved compared with conventional multiple model adaptive control.
Key wordsmultiple modelssecond level adaptationgeneralized predictive controlpolymerization kettleadaptive control
收稿日期: 2015-08-25 出版日期: 2016-07-22
ZTFLH:TP273
基金资助:国家自然科学基金面上基金资助项目(21376077);国家自然科学基金优秀青年基金资助项目(61222303);上海市自然科学基金资助项目(14ZR1410000,14ZR1421800);上海市重点学科建设基金资助项目(B504);流程工业综合自动化国家重点实验室开放课题基金资助项目(PALN201404)
引用本文:
王振雷, 毛福兴, 王昕. 基于二阶段自适应多模型的聚合釜温度控制[J]. 清华大学学报(自然科学版), 2016, 56(7): 707-716.
WANG Zhenlei, MAO Fuxing, WANG Xin. Temperature control of an acrylonitrile polymerization kettle using multiple models with second level adaptation. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 707-716.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.023 http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/707


图表:
图1 丙烯腈聚合反应工艺流程示意图
图2 MMSLA 控制结构
图3 噪声方差为σ2=0.01系统仿真的输出
图5 噪声方差为σ2=1时系统的仿真输出
图6 噪声方差为σ2=1时参数辨识
图4 噪声方差为σ2=0.01时参数辨识


参考文献:
[1] Chan K, Bui T N N, Woo Y Y. Fabrications and electrochemical properties of two-phase activated carbon nanofibers from electrospinning[C]//Proceedings of the IEEE Nanotechnology Materials and Devices Conference. Gyeongju, South Korea:IEEE Nanotechnology Council, 2005:412-413.
[2] 丁东湖, 金建祥. 聚氯乙烯温度控制方案的设计及应用[J]. 化工自动化及仪表, 2004, 31(2):15-16.DING Donghu, JIN Jianxiang. A study on application and control strategies of PVC temperature system[J]. Control and Instruments in Chemical Industry, 2004, 31(2):15-16.(in Chinese).
[3] Nemtoi G, Onu N A. Thermal effect of some polymerization and polycondensation reactions[J]. Ploymeric Ammonium Quaternary Salts. European Ploymer Journal, 2000, 36(12):2679-2680.
[4] YE Yanfei, WANG Bailin, SHAO Mingheng, et al. Improved generalized predictive control in polymerization process[C]//Proceedings of the Second International Conference on Mechanic Automation and Control Engineering. Huhehaote:Inner Mongolia University of Technology, 2011:1354-1357.
[5] SUN Zhou, GUO Liji. Modeling and fuzzy controller design for ACR Polymerizing-Kettles[C]//Proceedings of the 8th IEEE International Conference on Control and Automation. Xiamen:IEEE Control System Society, 2010:1688-1693.
[6] Jalili-Kharaajoo M. Predictive control of a continuous stirred tank reactor based on neuro-fuzzy model of the process[C]//Proceedings of the SICE Annual Conference. Fukui, Japan:The Society of Instrument and Control Engineers, 2003:3277-3282.
[7] Morse A S. Supervisory control of families of linear set-point controllers:Part I. Exact matching[J]. IEEE Transactions on Automatic Control, 1996, 41(10):1413-1431.
[8] Narendra K, Balakrishnan S. Adaptive control using multiple models[J]. IEEE Transactions on Automatic Control, 1997, 42(2):171-187.
[9] ZHUO Han, Narendra K S. New concepts in adaptive control using multiple models[J]. IEEE Transactions on Automatic Control, 2012, 42(1):171-187.
[10] Narendra K S, ZHUO Han. Discrete-time adaptive control using multiple models[C]//Proceedings of the American Control Conference. San Francisco, USA:American Automatic Control Council, 2011:2921-2926.
[11] Pandey V K, Ka I, Mahanta C. Multiple models and second level adaptation for a class of nonlinear systems with nonlinear parameterization[C]//Proceedings of the 9th International Conference on Industrial and Information Systems. Gwalior, India:ABV-Indian Institute of Information Technology and Management, 2014:1-6.
[12] Narendra K S, ZHUO Han. The changing face of adaptive control:The use of multiple models[J]. Annual Review in Control, 2011, 35(1):1-12.
[13] ZHUO Han, Narendra K S. Second level adaptation using multiple models[C]//Proceedings of the American Control Conference. San Francisco, USA:American Automatic Control Council, 2011:2350-2355.
[14] 唐振波. 丙烯腈水相沉淀聚合生产工艺研究[J]. 应用化工, 2011, 40(6):1069-1072. TANG Zhenbo. Research on productive process of precipitation polymerization of acrylonitrilein water phase[J]. Applied Chemical Industry, 2011, 40(6):1069-1072.(in Chinese)
[15] 刘忠涛, 基于LMI的丙烯腈聚合釜温度控制问题研究[D]. 哈尔滨:哈尔滨工业大学, 2010.LIU Zhongtao. Research on Control of the Acrylonitrile Polymerization Reactor Temperature Based on LMI[D]. Harbin:Harbin Institute of Technology, 2010.(in Chinese).
[16] DING Yongsheng, KUANG Xiaoliang, HAO Rong, et al. An intelligent cooperative decoupling controller for coagulation bath in polyacrylonitrile carbon fiber production[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2):467-479.
[17] Narendra K S, Driolle O A. Adaptive control using multiple models, switching, and tuning[J]. International Journal of Adaptive Control and Signal Processing, 2003, 17(2):87-102.
[18] Narendra K S, CHENG Xiang. Adaptive control of discrete-time system using multiple models[J]. IEEE Transactions on Automatic Control, 2000, 45(9):1669-1686.
[19] 席裕庚. 预测控制[M]. 北京:国防工业出版社, 1993.XI Yugeng. Predictive Control[M]. Beijing:National Defense Industry Press, 1993.(in Chinese).
[20] 李小田, 王昕, 王振雷, 等. 一种基于多模型切换的阶梯式广义预测控制算法[J]. 化工学报, 2012, 63(1):193-196.LI Xiaotian, WANG Xin, WANG Zhenlei, et al. A stair-like generalized predictive control algorithm based on multiple models switching[J]. CIESC Journal, 2012, 63(1):193-196.(in Chinese).


相关文章:
[1]王振雷, 陈登乾, 王昕. 基于多模型切换策略的精馏塔最优控制[J]. 清华大学学报(自然科学版), 2016, 56(4): 430-436.

相关话题/控制 系统 化工 基金 上海