删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同酸体系对微波消解法测量燃煤副产物中痕量元素的影响

清华大学 辅仁网/2017-07-07

不同酸体系对微波消解法测量燃煤副产物中痕量元素的影响
朱振武, 禚玉群
清华大学 热科学与动力工程教育部重点实验室, 北京 100084
Effect of acid systems for determination of trace elements in coal combustion byproductsusing microwave digestion method
ZHU Zhenwu, ZHUO Yuqun
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要微波消解法是测定飞灰和脱硫石膏等燃煤副产物中痕量元素含量的常用前处理方法。该文对现有微波消解方法进行总结分析,基于美国环保局Method 3052标准消解程序,研究了HNO3、HNO3-HCl和HNO3-HF-H3BO3 3种酸体系对脱硫石膏标准物质(FGD-2)的消解,采用电感耦合等离子质谱仪对As、Be、Cd、Co、Cr、Mn、Pb和Se含量进行测量,结果表明:采用HNO3-HF-H3BO3消解效果最好,Cr、Mn、Se等元素的回收率分别为93.5%、88.0%、97.7%。采用该方法对飞灰标准物质(GBW 08401)进行消解,As、Co、Cr、Mn、Pb和Se等元素的回收率也在90.6%~101.8%,Be和Cd的回收率较差。建立了采用HNO3-HF-H3BO3进行微波消解后,通过电感耦合等离子质谱仪测量燃煤副产物中痕量元素含量的方法。
关键词 痕量元素,脱硫石膏,飞灰,微波消解,ICP-MS
Abstract:Microwave digestion is the most common method for pretreating coal fly ash and flue gas desulfurization (FGD) gypsum before determination of the trace elements in the flow streams. This study analyzes previous microwave digestion methods. Then, the standard microwave digestion method 3052 from the US Environment Protection Agency is used to design three acid systems using HNO3, HNO3-HCl and HNO3-HF-H3BO3 for digesting certified reference gypsum material (FGD-2). After digestion, the As, Be, Cd, Co, Cr, Mn, Pb and Se contents are determined using inductively coupled plasma mass spectrometry (ICP-MS). The results show that HNO3-HF-H3BO3 gives the best digestion. The Cr, Mn and Se recoveries are 93.5%, 88.0% and 97.7%. Tests using a fly ash (GBW 08401) reference material also show good results with the As, Co, Cr, Mn, Pb and Se recoveries between 90.6% and 101.8%, but the Be and Cd recoveries are not good enough. This method can be used to determine the trace elements in coal fly ash and FGD gypsum by microwave digestion with HNO3-HF-H3BO3 followed by ICP-MS analysis.
Key wordstrace elementflue gas desulfurization (FGD) gypsumfly ashmicrowave digestioninductively coupled plasma mass spectrometry (ICP-MS)
收稿日期: 2015-12-04 出版日期: 2016-10-25
ZTFLH:X773
通讯作者:禚玉群,教授,E-mail:zhuoyq@tsinghua.edu.cnE-mail: zhuoyq@tsinghua.edu.cn
引用本文:
朱振武, 禚玉群. 不同酸体系对微波消解法测量燃煤副产物中痕量元素的影响[J]. 清华大学学报(自然科学版), 2016, 56(10): 1072-1078.
ZHU Zhenwu, ZHUO Yuqun. Effect of acid systems for determination of trace elements in coal combustion byproductsusing microwave digestion method. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1072-1078.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.041 http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1072


图表:
标准微波消解程序
燃煤副产物微波消解程序
ICP-MS测量的定量限
FGD-2脱硫石膏标准物质ICP-MS测量结果
GBW 08401飞灰标准物质ICP-MS测量结果


参考文献:
[1] 中华人民共和国国家统计局. 中国统计年鉴 [R]. 北京: 中国统计出版社, 2014.National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook [R]. Beijing: China Statistics Press, 2014. (in Chinese)
[2] 中国国家发展和改革委员会. 中国资源综合利用年度报告 [R]. 北京, 2014. National Development and Reform Commission. Annual Report of Comprehensive Utilization of Resources in China [R]. Beijing, 2014. (in Chinese)
[3] Xu M H, Yan R, Zheng C G, et al. Status of trace element emission in a coal combustion process: A review [J]. Fuel Processing Technology, 2004, 85(2): 215-237.
[4] Ratafia-Brown J A. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers [J]. Fuel Processing Technology, 1994, 39(1): 139-157.
[5] Meij R, Te Winkel H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations [J]. Atmospheric Environment, 2007, 41(40): 9262-9272.
[6] Clark R B, Ritchey K D, Baligar V C. Benefits and constraints for use of FGD products on agricultural land [J]. Fuel, 2001, 80(6): 821-828.
[7] Jankowski J, Ward C R, French D, et al. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems [J]. Fuel, 2006, 85(2): 243-256.
[8] Clark R B, Ritchey K D, Baligar V C. Benefits and constraints for use of FGD products on agricultural land [J]. Fuel, 2001, 80(6): 821-828.
[9] Abu-Samra A, Morris J S, Koirtyohann S R. Wet ashing of some biological samples in a microwave oven [J]. Analytical Chemistry, 1975, 47(8): 1475-1477.
[10] Kingston H M S. Standardization of sample preparation for trace element determination through microwave-enhanced chemistry [J]. Atomic Spectroscopy, 1998, 19(2): 27-30.
[11] Mester Z, Angelone M, Brunori C, et al. Digestion methods for analysis of fly ash samples by atomic absorption spectrometry [J]. Analytica Chimica Acta, 1999, 395(1): 157-163.
[12] Das A K, Chakraborty R, De la Guardia M, et al. ICP-MS multielement determination in fly ash after microwave-assisted digestion of samples [J]. Talanta, 2001, 54(5): 975-981.
[13] Iwashita A, Nakajima T, Takanashi H, et al. Determination of trace elements in coal and coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry [J]. Talanta, 2007, 71(1): 251-257.
[14] Iwashita A, Nakajima T, Takanashi H, et al. Effect of pretreatment conditions on the determination of major and trace elements in coal fly ash using ICP-AES [J]. Fuel, 2006, 85(2): 257-263.
[15] Low F, Zhang L. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES [J]. Talanta, 2012, 101: 346-352.
[16] Lachas H, Richaud R, Herod A A, et al. Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes [J]. Analyst, 1999, 124(2): 177-184.
[17] 刘晶, 郑楚光, 贾小红, 等. 微波消解和电感耦合等离子体发射光谱法同时测定煤灰中的 14 种元素 [J]. 分析化学, 2003, 31(11): 1360-1363.LIU Jing, ZHENG Chuguang, JIA Xiaohong, et al. Determination of 14 elements in coal ash by microwave digestion and inductively coupled plasma atomic emission spectrometry [J]. Chinese Journal of Analytical Chemistry, 2003, 31(11): 1360-1363. (in Chinese)
[18] 王珲, 宋蔷, 姚强, 等. 微波消解与 ICP-OES/ICP-MS 测定飞灰中的多种元素 [J]. 光谱实验室, 2012, 29(1): 525-528.WANG Hui, SONG Qiang, YAO Qiang, et al. Determination of multi-elements in fly ash by ICP-OES and ICP-MS with microwave digestion [J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(1): 525-528. (in Chinese)
[19] Hatanpää E, Kajander K, Laitinen T, et al. A study of trace element behavior in two modern coal-fired power plants I: Development and optimization of trace element analysis using reference materials [J]. Fuel Processing Technology, 1997, 51(3): 205-217.
[20] 王珲, 宋蔷, 杨锐明, 等. ICP-OES 和 ICP-MS 应用于石膏多元素分析时的样品微波消解方法研究 [J]. 光谱学与光谱分析, 2010(9): 2560-2563.WANG Hui, SONG Qiang, YANG Ruiming, et al. Study on microwave digestion of gypsum for the determinantion of multielement by ICP-OES and ICP-MS [J]. Spectroscopy and Spectral Analysis, 2010(9): 2560-2563. (in Chinese)
[21] Córdoba P, Ochoa-Gonzalez R, Font O, et al. Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet flue gas desulphurisation system [J]. Fuel, 2012, 92(1): 145-157.
[22] 朱振武, 禚玉群, 安忠义, 等. 湿法脱硫系统中痕量元素的分布 [J]. 清华大学学报: 自然科学版, 2013, 53(3): 330-335.ZHU Zhenwu, ZHUO Yuqun, AN Zhongyi, et al. Trace element distribution during wet flue gas desulphurization system [J]. J Tsinghua Univ:Sci & Tech, 2013, 53(3): 330-335. (in Chinese)
[23] Agazzi A, Pirola C. Fundamentals, methods and future trends of environmental microwave sample preparation [J]. Microchemical Journal, 2000, 67(1): 337-341.
[24] Li Z B, Demopoulos G P. Solubility of CaSO4 phases in aqueous HCl+CaCl2 solutions from 283 K to 353 K [J]. Journal of Chemical & Engineering Data, 2005, 50(6): 1971-1982.
[25] 于兆水, 孙晓玲, 张勤. 电感耦合等离子体质谱法测定地球化学样品中砷的干扰校正方法 [J]. 分析化学, 2008, 36(11): 1571-1574.YU Zhaoshui, SUN Xiaoling, ZHANG Qin. Using 37Cl16O/52Cr to correct 40Ar35Cl interference for the analysis of arsenic in geo-chemical exploration samples by inductively coupled plasma-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1571-1574. (in Chinese)


相关文章:
No related articles found!

相关话题/微波 测量 物质 北京 程序