删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

雷达目标双曲线调频回波生成

清华大学 辅仁网/2017-07-07

雷达目标双曲线调频回波生成
周伟1, 叶春茂2, 金侃1, 鲁耀兵2, 杨健1
1. 清华大学 电子工程系, 北京 100084;
2. 北京无线电测量研究所, 北京 100854
Radar echo generation for hyperbolic frequency-modulation waveforms
ZHOU Wei1, YE Chunmao2, JIN Kan1, LU Yaobin2, YANG Jian1
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Institute of Radio Measurement, Beijing 100854, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要由于双曲线调频(hyperbolic frequency-modulation, HFM)信号具备良好的Doppler不变性, 比线性调频信号更有利于高速运动目标的探测和成像。但是对于复杂电大尺寸目标, 直接采用高频电磁散射理论生成宽带回波计算量非常庞大。为研究HFM信号在宽带雷达成像中的应用, 该文提出一种利用目标静态电磁计算数据的HFM信号回波快速生成方法, 通过相位匹配滤波和频域降采样有效地降低了计算复杂度, 并详细分析了目标高速运动对HFM信号匹配滤波的影响。该方法同时适用于线性调频信号的宽带回波仿真。仿真结果验证了该方法的正确性和有效性。
关键词 宽带回波生成,双曲线调频,高速运动目标,匹配滤波
Abstract:The hyperbolic frequency-modulation (HFM) waveform is more conducive to high speed moving target detection and imaging than the commonly used linear frequency-modulation (LFM) waveform, due to its inherent Doppler-invariant property. However, the generation of radar echoes is computationally intensive when using high frequency algorithms for complex electrically large targets. A fast method was developed for generating HFM radar echoes using static electromagnetic data for HFM waveforms in wideband radar imaging with the computational complexity effectively reduced by phase-matched filtering and frequency domain down-sampling. The result is used to study the influence to HFM signal matched filtering for high-speed movements. This method is also suitable for LFM waveforms. Simulations verify the accuracy and effectiveness of this method.
Key wordswideband echo generationhyperbolic frequency-modulationhigh speed targetsmatched filtering
收稿日期: 2014-06-10 出版日期: 2015-09-30
ZTFLH:TN957.52
通讯作者:杨健,教授,E-mail:yangjian_ee@tsinghua.edu.cnE-mail: yangjian_ee@tsinghua.edu.cn
引用本文:
周伟, 叶春茂, 金侃, 鲁耀兵, 杨健. 雷达目标双曲线调频回波生成[J]. 清华大学学报(自然科学版), 2015, 55(8): 878-883.
ZHOU Wei, YE Chunmao, JIN Kan, LU Yaobin, YANG Jian. Radar echo generation for hyperbolic frequency-modulation waveforms. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 878-883.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I8/878


图表:
图1 HFM 信号特性
图2 回波快速生成流程图
图3 仿真目标模型和静态高分辨一维距离像
图4 HFM 和LFM 信号仿真结果对比


参考文献:
[1] Remley W R. Doppler dispersion effects in matched filter detection and resolution [J]. Proceedings of the IEEE, 1966, 54(1): 33-39.
[2] Ramp H O, Wingrove Jr E R. Performance degradation of linear FM-pulse-compression systems due to the Doppler effect [J]. Proc IRE, 1961, 49: 1693.
[3] 黄小红,邱兆坤,王伟. 目标高速运动对宽带一维距离像的影响及补偿方法研究 [J]. 信号处理, 2002, 06:487-490.HUANG Xiaohong, QIU Zaokun, Wang Wei, Research oneffect of wideband range profile imaging and compensating method for target moving with high velocity [J]. Signal Processing, 2002, 06:487-490. (in Chinese)
[4] Tian B, Chen Z, Xu S, et al.ISAR imaging compensation of high speed targets based on integrated cubic phase function [C]// Eighth International Symposium on Multispectral Image Processing and Pattern Recognition. Wuhan, China: International Society for Optics and Photonics, 2013: 89170B1-89170B8.
[5] Kroszczynski J J. Pulse Compression by means of linear-period modulation [J]. Proc IEEE, 1969, 57(7): 1260-1266.
[6] Yang J, Sarkar T K. Doppler-invariant property of hyperbolic frequency modulated waveforms [J]. Microwave and optical technology letters, 2006, 48(6): 1174-1179.
[7] Zhang L, Xu X, Feng W, et al. HFM spread spectrum modulation scheme in shallow water acoustic channels [C]// IEEE OCEANS Conference, Hampton Roads, VA, USA: IEEE Press, 2012: 1-6.
[8] Marszal J, Salamon R. Distance measurement errors in silent FM-CW sonar with matched filtering [J]. Metrology and Measurement Systems, 2012, 19(2): 321-332.
[9] McCue J J G. Modulation diversity for pulse compressing radars [J]. IEEE Transactions on Aerospace Electronic Systems, 1977, 13: 541-544.
[10] 王虹现,全英汇,邢孟道,等. 基于FPGA的SAR回波仿真快速实现方法 [J]. 系统工程与电子技术,2010,11:2284-2289. WANG Hongxian, QUAN Yinghui, XING Mengdao, et al, Fast realization of SAR echo simulation based on FPGA [J]. System Engineering and Electronics, 2010, 11:2284-2289. (in Chinese)
[11] 王海彬. 基于高频电磁散射理论的电大复杂目标宽带雷达回波快速计算方法 [J]. 电子学报, 2010, 38(3): 561-566.WANG Haibin. A fast frequency algorithm for predicting wide band radar signal of large complex targets [J]. ACTA ELECTRONICA SINICA, 2010, 38(3): 561-566. (in Chinese)
[12] 姜卫东, 曹敏, 聂镭, 等. 空间目标动态电磁测量数据仿真方法研究 [J]. 系统工程与电子技术, 2009, 31(9): 2042-2045. JIANG Weidong, CAO Min, NIE Lei, et al. Study on dynamic electromagnetic data simulation of space targets [J]. System Engineering and Electronics, 2009, 31(9): 2042-2045. (in Chinese)
[13] 姚汉英, 李星星, 孙文峰, 等. 基于电磁散射数据的弹道目标宽带回波仿真 [J]. 系统仿真学报, 2013, 25(004): 599-604. YAO Hanying, LI Xingxing, SUN Wenfeng, et al. Wideband echo simulation of ballistic targets based on electromagnetic scattering data [J]. Journal of System Simulation, 2013, 25(004): 599-604. (in Chinese)
[14] 王超. 高频电磁散射建模方法及工程应用 [D].北京: 中国传媒大学,2009.WANG Chao. High Frequency Electromagnetic Scattering Modeling and Its Application [D]. Beijing: Communication University of China, 2009. (in Chinese)


相关文章:
[1]刘春, 殷君君, 杨健. 基于岸线特征点合并的极化SAR图像小型港口检测[J]. 清华大学学报(自然科学版), 2015, 55(8): 849-853.
[2]王智睿, 张旭东, 许稼. 基于Radon变换的SAR地面运动目标径向速度估计[J]. 清华大学学报(自然科学版), 2015, 55(8): 860-865.
[3]宋胜利, 杨健. 基于鲁棒主成分分析的SAR舰船检测[J]. 清华大学学报(自然科学版), 2015, 55(8): 844-848.
[4]杨帆, 杨健, 殷君君, 宋建社. 基于极化SAR分解模型的油膜检测[J]. 清华大学学报(自然科学版), 2015, 55(8): 854-859.
[5]李增辉, 常雯, 杨健. 基于外推陷波滤波的孤立强散射旁瓣抑制[J]. 清华大学学报(自然科学版), 2015, 55(5): 503-507.

相关话题/信号 运动 北京 计算 数据