|
文章导读 |
|
摘要社交网络的流行对用户的隐私保护提出了新的挑战。该文通过使用人类动力学和统计物理的方法,研究用户的网络行为与用户隐私量值的关系。以当前国内流行的社交网络——人人网和新浪微博——为研究对象,获取用户的真实数据,提出隐私量化模型。研究结果表明: 用户的网络行为对隐私量值具有重要的影响,如在人人网中用户的地理位置分享行为对隐私量值影响较大,而在新浪微博中发私信行为对隐私量值的影响最大。研究的结果对社交网络隐私关注下的用户行为规律探讨具有理论与实际意义。
|
关键词 :隐私保护,隐私量化,人类动力学,社交网络,网络用户行为 |
Abstract:The popularity of social networks puts forward new challenges on the user's privacy protection. In this paper, the methods of human dynamics and statistical physics were used to study the relationship of user's network behaviors and user's privacy value. Current domestic popular social networking sites, Renren and Sina Weibo, were used as the research objects, with the user's actual data then obtained and a privacy quantitative model proposed. The results show that the user's behaviors on the network have an important impact on the value of privacy. Renren's sharing behavior in the user's geographic location has great impact on privacy, while Sina microblogging sending private messages has the greatest impact on the value of privacy. Conclusions of this study have theoretical and practical significance.
|
Key words:privacy protectionprivacy quantificationhuman dynamicssocial networksuser network behavior |
收稿日期: 2014-01-20 出版日期: 2015-04-16 |
|
基金资助:浙江省自然科学基金资助项目(Y1100314 );国家广电总局研究项目(GD10101) |
[1] | 胡启平,陈霞.试析社交网络环境中个人隐私保护[J].信息网络安全, 2010(8): 43-44. HU Qiping, CHEN Xia. Protection of privacy on social networking environments[J]. Information Network Security, 2010(8): 43-44. (in Chinese) |
[2] | Ziegele M, Quiring O. Privacy in social network sites[M]// Perspectives on Privacy and Self-Disclosure in the Social Web. Springer, 2011. |
[3] | Røssvoll T H, Fritsch L. Trustworthy and inclusive identity management for applications in social media[M]// Human-Computer Interaction. Users and Contexts of Use. Springer Berlin Heidelberg, 2013: 68-77. |
[4] | Liu Y, Gummadi K P, Krishnamurhy B, et al. Analyzing facebook privacy settings: User expectations vs. reality [C]// Proc of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference. New York, NY, USA: ACM, 2011: 61-70. |
[5] | Strater K, Lipford H R. Strategies and struggles with privacy in an online social networking community [C]// Proceedings of the 22nd British HCI Group Annual Conference on People and Computers: Culture, Creativity, Interaction-Volume 1. UK: British Computer Society, 2008: 111-119. |
[6] | Lewis K, Kaufman J, Christakis N. The taste for privacy: An analysis of college student privacy settings in an online social network[J]. Journal of Computer-mediated Communication, 2008, 14(1): 79-100. |
[7] | Zhou T. Human activity pattern on on-line movie watching[J]. Complex Systems and Complexity Science, 2008(3): 1-5. |
[8] | Wu Y, Zhou C, Chen M, et al.Human comment dynamics in on-line social systems[J]. Physica A, 2010, 389(24): 5832-5837. |
[9] | Wang X G. Empirical analysis on behavior characteristics and relation characteristics of micro-blog users: Take “Sina Micro-blog” for example[J]. Library and Information Service, 2010, 54(14): 66-70. |
[10] | 闫强,吴联仁,郑兰. 微博社区中用户行为特征及其机理研究[J]. 电子科技大学学报, 2013, 42(3): 328-333. YAN Qiang, WU Lianren, ZHENG Lan. Research on user behavior characters and mechanism in microblog communities[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(3): 328-333. (in Chinese) |
[11] | Dezso Z, Almaas E, Lukacs A, et al.Dynamics of information access on the web[J]. Physical Review E, 2006, 73(6): 066132. |
[12] | Gao X R, Yang K. Factors affecting internet users' information privacy protection[J]. Journal of Intelligence, 2011(4): 39-42. |
[13] | Jiang X, Ji S B. Conceptual model of the factors influencing consumer online privacy concern and behavior intention[J]. Science Technology and Management, 2009, 11(5): 71-74. |
[14] | Zhang Z J, Lv T J. Empirical study of users' acceptance model on mobile LBS[J]. Journal of Beijing University of Posts and Telecommunications: Social Sciences Edition, 2012, 14(1): 56-61. |
[15] | Wang B, Duan Y X. Research on information privacy quantization method facing ubiquitous computing environment[J]. Computer Engineering and Applications, 2011, 47(27): 1-5. |
[16] | Jing L, Ng M K, Huang J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. Knowledge and Data Engineering, IEEE Transactions on, 2007, 19(8): 1026-1041. |
[17] | Liu X. Parameterized defuzzification with maximum entropy weighting function: Another view of the weighting function expectation method[J]. Mathematical and Computer Modelling, 2007, 45(1): 177-188. |