删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

刚体有限元方法改进及其在风力机动力学中的应用

清华大学 辅仁网/2017-07-07

刚体有限元方法改进及其在风力机动力学中的应用
张丰豪,何榕()
Modified rigid finite element method for wind turbine dynamics
Fenghao ZHANG,Rong HE()
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要在建立风力机结构动力学模型过程中,该文发现刚体有限元方法采用的二次划分方法存在缺陷,会导致系统动能存在损失、精度降低。为了对这些缺陷进行改进,抛弃二次划分方法,根据实际结构灵活布置弹性阻尼节点,并调整了弹性阻尼节点的作用范围。对改进方法的正确性和精度进行对比验证,结果表明: 改进方法具有更高的精度; 在分段数目较少时,其位移和频率结果更接近精确解。改进方法灵活易用,处理边界条件简便,有利于在工程应用中的推广。采用改进方法建立了水平轴风力发电机的整机结构动力学模型,该模型结果精确可靠。

关键词 风力机,动力学,柔性,刚体有限元,改进
Abstract:The two-stage-division method used by the rigid finite element method has some defects that restrict analyses for wind turbine dynamics. A modified method is developed which replaces the two-stage-division method by distributing the spring damping elements as in the real structure. The action range of the spring damping element is also adjusted. The displacement and frequency results computed by the modified method are very close to precise results. The modified method is flexible with easily applied boundary conditions, so this method can be widely used. A wind turbine dynamic model developed using the modified method gives accurate results.

Key wordswind turbinedynamicflexiblerigid finite elementmodification
收稿日期: 2013-09-25 出版日期: 2015-04-16
ZTFLH: 
基金资助:国家自然科学基金资助项目 (21376134)
引用本文:
张丰豪, 何榕. 刚体有限元方法改进及其在风力机动力学中的应用[J]. 清华大学学报(自然科学版), 2014, 54(2): 253-258.
Fenghao ZHANG, Rong HE. Modified rigid finite element method for wind turbine dynamics. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 253-258.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/253


图表:
刚体有限元方法示意图
坐标系设置
刚体有限元方法处理多体系统连接的示意图
刚体有限元划分方法改进示意图
划分5段时0.2 m位置处的位移结果
划分10段时0.1 m位置处的位移结果
改进前后最大位移误差绝对值对比
方法 精确解/(10-4m) 5段 10段 20段
位移最大值/(10-4m) 误差/% 位移最大值/(10-4m) 误差/% 位移最大值/(10-4m) 误差/%
改进前
4.042
3.963 -1.95 3.972 -1.73 3.997 -1.11
改进后 4.057 0.37 4.050 0.19 4.049 0.148


不同分段数目下自由端的最大位移及误差
频率/Hz
1阶 2阶 3阶
精确解 14.47 90.69 254.00
改进方法 14.50 90.70 253.89
误差/% 0.206 0.013 -0.023


改进方法固有频率与精确解对比(20段)
改进前后频率的误差绝对值对比
风力机模型的结果对比
风力机部件 类型 BModes/Hz 本文模型/Hz
1阶弯振 0.42 0.40

塔架
2阶弯振 2.37 2.33
3阶弯振 5.10 4.98
1阶扭振 1.95 1.84
1阶挥舞 1.21 1.20

叶片
2阶挥舞 1.83 1.83
1阶摆振 3.72 3.70
2阶摆振 6.13 6.10


风力机固有频率与有限元结果对比


参考文献:
[1] Mostafaeipour A. Productivity and development issues of global wind turbine industry[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 1048-1058.
[2] Tempel J, Molenaar D P. Wind turbine structural dynamics: A review of the principles for modern power generation, onshore and offshore[J]. Wind Engineering, 2002, 26(4): 211-222.
[3] Larsen J W, Nielsen S R K. Non-linear dynamics of wind turbine wings[J]. International Journal of Non-Linear Mechanics, 2006, 41(5): 629-643.
[4] Rasmussen F, Hansen M H. Present status of aeroelasticity of wind turbines[J]. Wind Energy, 2003, 6(3): 213-228.
[5] Ahlstrom A. Aeroelastic Simulation of Wind Turbine Dynamics [D]. Stockholm: Royal Institute of Technology, 2005.
[6] Lee D. Multi-Flexible-Body Analysis for Application to Wind Turbine Control Design [D]. Atlanta, GA: Georgia Institute of Technology, 2003.
[7] Peeters J. Simulation of Dynamic Drive Train Loads in a Wind Turbine [D]. Leuven: Katholieke University, 2006.
[8] Shabana A A. Dynamics of Multibody Systems [M]. Cambridge: Cambridge University Press, 2005.
[9] Wittbrodt E, Adamiec-Wójcik I. Dynamics of Flexible Multibody Systems: Rigid Finite Element Method[M]. Berlin: Springer, 2006.
[10] Wittbrodt E, Szczotka M, Wojciech S, et al.Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures[M]. Berlin: Springer, 2013.
[11] Wojciech S, Adamiec-Wojcik I. Nonlinear vibrations of spatial viscoelastic beams[J]. Acta Mechanica, 1993, 98: 15-25.
[12] Wojciech S, Adamiec-Wojcik I. Experimental and computational analysis of large amplitude vibrations of spatial viscoelastic beams[J]. Acta Mechanica, 1994, 106: 127-136.
[13] Wittbrodt E, Wojciech S. Application of rigid finite element method to dynamic analysis of spatial systems[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 891-898.
[14] Szczotka M. A modification of the rigid finite element method and its application to the J-lay problem[J].Acta Mechanica, 2011, 220: 183-198.
[15] Adamiec-Wojcik I. Optimization problem for planning a trajectory of a manipulator with a flexible link[J].Advances in Manufacturing Science and Technology, 2010, 34(4): 87-98.
[16] Szcztka M, Wojciech S. Application of joint coordinates and homogeneous transformations to modelling of vehicle dynamics[J]. Nonlinear Dynamics, 2008, 52: 377-393.
[17] Urbas A, Szczotka M, Maczynski A. Analysis of movement of the BOP crane under sea weaving conditions[J]. Journal of Theoretical and Applied Mechanics, 2010, 48(3): 677-701.
[18] Szczotka M. Dynamic analysis of an offshore pipe laying operation using the reel method[J]. Acta Mechanica Sinica, 2011, 27(1): 44-55.
[19] Meirovitch L. Elements of Vibration Analysis[M]. New York, NJ: McGraw-Hill, 1975.
[20] Shames I H, Pitarresi J M. Introduction to Solid Mechanics[M]. Upper Saddle River, NJ: Prentice-Hall, 2000.


相关文章:
[1]张辉,于长亮,王仁彻,叶佩青,梁文勇. 机床支撑地脚结合部参数辨识方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 815-821.
[2]褚文博,罗禹贡,罗剑,李克强. 电驱动车辆的整车质量与路面坡度估计[J]. 清华大学学报(自然科学版), 2014, 54(6): 724-728.
[3]刘荣华,魏加华,翁燕章,王光谦,唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
[4]袁静,王俊松,李强,陈曦. 基于递归特性的网络应用流量行为分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 515-521.
[5]朱涵钰,吴联仁,吕廷杰. 社交网络用户隐私量化研究: 建模与实证分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 402-406.
[6]AbdoulayeCoulibaly, 林曦鹏, 毕景良, 柯道友. 过冷池沸腾中气泡聚并对壁面换热影响的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(2): 240-246.
[7]冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
[8]杨杰, 翁文国. 基于改进无偏灰色模型的燃气供气量的预测[J]. 清华大学学报(自然科学版), 2014, 54(2): 145-148.

相关话题/结构 计算 网络 系统 工程