青海大学农林科学院,青海省蔬菜遗传与生理重点实验室,西宁 810016
Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
为充分利用菜籽饼和牛羊粪等固体废物资源并提高其产沼气性能,以农用沼气池为发酵装置,研究了高含固率菜籽饼和牛粪-羊粪10个不同配比(以干物质计)混合厌氧发酵40 d的产沼气特性。结果表明,各混合处理的整个发酵过程运行良好,厌氧消化运行情况稳定。其中,菜籽饼与羊粪干物质配比为2∶1时具有较高的产气潜力,累积产气量最大,达到122.92 m
)则随菜籽饼添加量的增加而降低。本研究结果可为菜籽饼和畜禽粪便的资源化利用提供参考。
In order to make full use of the waste resources such as rape cake and cow dung and sheep manure and improve the biogas production performance at the same time, this test was based on the agricultural biogasdigester as the fermentation device, to study the characteristics of mixed anaerobic fermented 40d biogas of rape seed cake with high solid-state rate and cow dung-sheep manure in 10 different proportions (calculated by dry material). According to the result, it indicated that the entire fermentation process of each mixed treatment is under good operation, which suggested that the mixed fermentation could improve the anaerobic digestion and operation effect, of which, the accumulated biogas yield had high potential when the dry material proportion of rape seed cake and sheep manure was 2∶1, up to 122.92 m
. Meanwhile, the biogas effect of mixed fermentation by rape seed cake and sheep manure was better than that of the cow dung mixing. The modified Gompertz model indicated that each treatment could fit the process of producing biogas well, of which, the value of maximum biogas yield (
) decreased with the increase in the addition volume of rape seed cake. This study provided valuable reference for resource utilization of rape seed cake and feces.
.
Daily biogas production of mixture of rapeseed cake and cow dung-sheep manure
Cumulative biogas production of mixture of rapeseed cake and cow dung-sheep manure
不同处理发酵过程中VFA质量浓度的变化情况
Changes of VFA concentration during different fermentation processes
Changes of alkalinity during different fermentation processes
Changes of ammonia nitrogen during different fermentation processes
Changes of pH during different fermentation processes
Curves of measured cumulated biogas production and fitted gas production
Kinetic parameters of modified Gompertz model for biogas production from different treatments
[1] | PIOTR K, DANIEL K, KRZYSZTOF L, et al. The effect of hydrothermally processed soybean and rapeseed-based diets on performance, meat and carcass quality characteristics in growing-finishing pigs[J]. Annals of Animal Science, 2019, 19(4): 1083-1097. doi: 10.2478/aoas-2019-0045 |
[2] | SMETS K, ADRIAENSENS P, REGGERS G, et al. Flash pyrolysis of rapeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2): 118-127. doi: 10.1016/j.jaap.2010.11.002 |
[3] | 祝红蕾, 储大勇, 刘华. 菜籽饼粕有机肥的应用[J]. 安徽化工, 2013, 39(5): 13-14. doi: 10.3969/j.issn.1008-553X.2013.05.004 |
[4] | 王铁灵. 畜禽养殖污染的有效治理策略[J]. 中国畜牧业, 2016(21): 38-40. |
[5] | WANG S N, YUAN R F, LIU C C, et al. Effect of Fe2+ adding period on the biogas production and microbial community distribution during the dry anaerobic digestion process[J]. Process Safety and Environmental Protection, 2020, 136: 234-241. doi: 10.1016/j.psep.2019.12.031 |
[6] | ZHAI S M, LI M, XIONG Y H, et al. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316: 123903. doi: 10.1016/j.biortech.2020.123903 |
[7] | DRA?BO A, KOZ?OWSKI K, OGNIK K, et al. The effect of raw and fermented rapeseed cake on growth performance, carcass traits, and breast meat quality in turkey[J]. Poultry Science, 2019, 98(11): 6161-6169. doi: 10.3382/ps/pez322 |
[8] | HANG L, ZHANG K Y, FRALEY G S, et al. High vitamin levels ameliorate negative effect of rapeseed meal in meat ducks by improving antioxidant activity[J]. Poultry Science, 2019, 98(10): 4622-4631. doi: 10.3382/ps/pez160 |
[9] | WANG Y, LIU J, WEI F, et al. Improvement of the nutritional value, sensory properties and bioavailability of rapeseed meal fermented with mixed microorganisms[J]. LWT-Food Science and Technology, 2019, 112: 108238. doi: 10.1016/j.lwt.2019.06.005 |
[10] | 余小芬, 杨树明, 邹炳礼, 等. 菜籽油枯有机无机复混肥对烤烟产质量及养分利用率的影响[J]. 土壤学报, 2020, 57(6): 1564-1574. |
[11] | 李司童, 毛凯伦, 郑璞帆, 等. 生物炭与菜籽饼配施对土壤养分及烟叶产质量的影响[J]. 中国土壤与肥料, 2017(4): 37-43. doi: 10.11838/sfsc.20170406 |
[12] | 马旭光, 江滔, 唐琼, 杨娟. 牛粪添加量对油菜秆半固态发酵产甲烷特性的影响[J]. 农业工程学报, 2016, 32(S2): 323-330. |
[13] | 刘杨, 闫志英, 姬高升, 等. 水稻秸秆序批式干发酵产沼气中试及其动力学研究[J]. 农业工程学报, 2018, 34(23): 221-226. doi: 10.11975/j.issn.1002-6819.2018.23.028 |
[14] | CUI Z F, SHI J, LI Y B. Solid-state anaerobic digestion of spent wheat straw from horse stall[J]. Bioresource Technology, 2011, 102(20): 9432-9437. doi: 10.1016/j.biortech.2011.07.062 |
[15] | LV Z, FENG L, SHAO L, et al. The effect of digested manure on biogas productivity and microstructure evolution of corn stalks in anaerobic cofermentation[J]. BioMed Research International, 2018(2018): 5214369. |
[16] | ZHAO Y B, SUN F R, YU J D, et al. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation[J]. Bioresource Technology, 2018, 269: 143-152. doi: 10.1016/j.biortech.2018.08.040 |
[17] | AWORANTI O A, AGARRY S E, OGUNLEYE O O. Biomethanization of the mixture of cattle manure, pig manure and poultry manure in co-digestion with waste peels of pineapple fruit and content of chicken-gizzard - Part II: Optimization of process[J]. The Open Biotechnology Journal, 2017, 11: 54-71. doi: 10.2174/1874070701711010054 |
[18] | 韩睿, 朱德锐, 陈来生. 青海户用沼气池料液温度变化特征及对产气的影响[J]. 中国沼气, 2016, 34(6): 95-100. doi: 10.3969/j.issn.1000-1166.2016.06.018 |
[19] | 赵玲, 李森, 王聪, 等. 不同预处理对秸秆木质纤维组分特性的影响[J]. 沈阳农业大学学报, 2017, 48(2): 244-249. |
[20] | 詹晓燕, 刘臣辉, 范海燕, 等. 水体中氨氮测定方法的比较: 纳氏试剂光度法、靛酚蓝比色法[J]. 环境科学与管理, 2010, 35(11): 132-134. doi: 10.3969/j.issn.1673-1212.2010.11.034 |
[21] | 谢海婷. 氯离子对厌氧处理废水中蒸馏法测定VFA的影响[D]. 郑州: 郑州大学, 2017. |
[22] | OTERO M, LOBATO A, CUETOS M J, et al. Digestion of cattle manure: thermogravimetric kinetic analysis for the evaluation of organic matter conversion[J]. Bioresource Technology, 2011, 102(3): 3404-3410. doi: 10.1016/j.biortech.2010.10.016 |
[23] | 王金主, 王元秀, 李峰, 等. 玉米秸秆中纤维素、半纤维素和木质素的测定[J]. 山东食品发酵, 2010(3): 44-47. |
[24] | 雷红. 凯氏定氮法消化实验方法的改进[J]. 科技创新与应用, 2013(34): 22. |
[25] | HU Z H, YU H Q. Anaerobic digestion of cattail by rumen cultures[J]. Waste Management, 2006, 26(11): 1222-1228. doi: 10.1016/j.wasman.2005.08.003 |
[26] | 马旭光, 江滔, 唐琼, 等. 油菜秸秆和鸡粪比例及含固率对其发酵产甲烷特性的影响[J]. 农业工程学报, 2018, 34(12): 236-244. doi: 10.11975/j.issn.1002-6819.2018.12.029 |
[27] | 罗娟, 赵立欣, 姚宗路, 等. NaOH预处理甘蔗叶与猪粪-牛粪混合厌氧消化工艺参数优化[J]. 农业工程学报, 2019, 35(5): 212-218. |
[28] | 周丹丹. 混合原料批次恒温厌氧发酵动力学过程研究[D]. 兰州: 兰州理工大学, 2014. |
[29] | WEI S Z, GUO Y F. Comparative study of reactor performance and microbial community in psychrophilic and mesophilic biogas digesters under solid state condition[J]. Journal of Bioscience and Bioengineering, 2018, 125(5): 543-551. doi: 10.1016/j.jbiosc.2017.12.001 |
[30] | LIN J, ZUO J, GAN L, et al. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China[J]. Journal of Environmental Sciences, 2011, 23(8): 1403-1408. doi: 10.1016/S1001-0742(10)60572-4 |
[31] | ADRIE V, SERGEY K, HEIJO S, et al. Effect of pH and VFA on hydrolysis of organic solid waste[J]. Journal of Environmental Engineering, 2000, 126(12): 1076-1081. doi: 10.1061/(ASCE)0733-9372(2000)126:12(1076) |
[32] | TA A T, BABEL S. Utilization of green waste from vegetable market for biomethane production: Influences of feedstock to inoculum ratios and alkalinity[J]. Journal of Material Cycles and Waste Management, 2019, 21(6): 1391-1401. doi: 10.1007/s10163-019-00898-2 |
[33] | RAPOSO F, BANKS C J, SIEGERT I, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests[J]. Process Biochemistry, 2006, 41(6): 1444-1450. doi: 10.1016/j.procbio.2006.01.012 |
[34] | YENIGUN O, DEMIREL B. Ammonia inhibition in anaerobic digestion: A review[J]. Process Biochemistry, 2013, 48(5/6): 901-911. |
[35] | LI L, HE Q M, WEI Y M, et al. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste[J]. Bioresource Technology, 2014, 171: 491-494. doi: 10.1016/j.biortech.2014.08.089 |
[36] | ZHAO J, HOU T, LEI Z, et al. Effect of biogas recirculation strategy on biogas upgrading and process stability of anaerobic digestion of sewage sludge under slightly alkaline condition[J]. Bioresource Technology, 2020, 308: 123293. doi: 10.1016/j.biortech.2020.123293 |
[37] | FANG W, ZHANG, P, ZHANG G, et al. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization[J]. Bioresource Technology, 2014, 168: 167-172. doi: 10.1016/j.biortech.2014.03.050 |
[38] | LI Y Q, ZHANG R H, CHEN C, et al. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions[J]. Bioresource Technology, 2013, 149: 406-412. doi: 10.1016/j.biortech.2013.09.091 |
[39] | YU J, ZHAO L, FENG J, et al. Sequencing batch dry anaerobic digestion of mixed feedstock regulating strategies for methane production: Multi-factor interactions among biotic and abiotic characteristics[J]. Bioresource Technology, 2019, 284: 276-285. doi: 10.1016/j.biortech.2019.03.141 |
[40] | KATHERINE S, MANUEL A, ESTRELLA A, et al. Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm[J]. Anaerobe, 2004, 10(1): 8-13. |
[41] | YE J Q, LI D, SUN Y M, et al. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure[J]. Waste Management, 2013, 33(12): 2653-2658. doi: 10.1016/j.wasman.2013.05.014 |
[42] | A?DA? O N, SPONZA D T. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes[J]. Chemosphere, 2005, 59(6): 871-879. doi: 10.1016/j.chemosphere.2004.11.017 |
[43] | MASSE L, MASSé D I, KENNEDY K J, et al. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater[J]. Biotechnology and Bioengineering, 2002, 79(1): 43-52. doi: 10.1002/bit.10284 |
[44] | 贺静, 邓雅月, 李凛, 等. 废弃食用油脂两相厌氧发酵酸化条件优化[J]. 农业工程学报, 2015, 31(19): 247-253. doi: 10.11975/j.issn.1002-6819.2015.19.035 |
[45] | ANGELIDAKI I, SANDERS W. Assessment of the anaerobic bio-degrad- ability of macropollutants[J]. Reviews in Environmental Science and Bio-Technology, 2004, 3(2): 117-129. doi: 10.1007/s11157-004-2502-3 |
[46] | KIM S H, HAN S K, SHIN H S. Kinetics of LCFA inhibition on acetoclas tic methanogenesis, propionate degradation and β-oxidation[J]. Journal of Environmental Science and Health Part A, 2004, 39(4): 1025-1037. |
[47] | 赵芳, 李江华, 董滨, 等. 长链脂肪酸对厌氧消化产沼的抑制作用研究进展[J]. 安徽农业科学, 2012, 40(25): 12564-12567. doi: 10.3969/j.issn.0517-6611.2012.25.085 |
[48] | 王武娟. 羊粪与南方农业废弃物厌氧发酵产沼气条件优化研究[D]. 南宁: 广西大学, 2019. |